Prédiction du mouvement humain pour la robotique collaborative : du geste accompagné au mouvement corps entier. - TEL - Thèses en ligne Access content directly
Theses Year : 2018

Movement Prediction: From Simple Gesture to Whole-Body Movements.

Prédiction du mouvement humain pour la robotique collaborative : du geste accompagné au mouvement corps entier.

Abstract

This thesis lies at the intersection between machine learning and humanoid robotics, under the theme of human-robot interaction and within the cobotics (collaborative robotics) field. It focuses on prediction for non-verbal human-robot interactions, with an emphasis on gestural interaction. The prediction of the intention, understanding, and reproduction of gestures are therefore central topics of this thesis. First, the robots learn gestures by demonstration: a user grabs its arm and makes it perform the gestures to be learned several times. The robot must then be able to reproduce these different movements while generalizing them to adapt them to the situation. To do so, using its proprioceptive sensors, it interprets the perceived signals to understand the movement made by the user in order to generate similar ones later on. Second, the robot learns to recognize the intention of the human partner based on the gestures that the human initiates: the robot then has to perform the gestures adapted to the situation and corresponding to the user's expectations. This requires the robot to understand the user's gestures. To this end, different perceptual modalities have been explored. Using proprioceptive sensors, the robot feels the user's gestures through its own body: it is then a question of physical human-robot interaction. Using visual sensors, the robot interprets the movement of the user's head. Finally, using external sensors, the robot recognizes and predicts the user's whole body movement. In that case, the user wears sensors (in our case, a wearable motion tracking suit by XSens) that transmit his posture to the robot. In addition, the coupling of these modalities was studied. From a methodological point of view, the learning and the recognition of time series (gestures) have been central to this thesis. In that aspect, two approaches have been developed. The first is based on the statistical modeling of movement primitives (corresponding to gestures): ProMPs. The second adds Deep Learning to the first one, by using auto-encoders in order to model whole-body gestures containing a lot of information while allowing a prediction in soft real time. Various issues were taken into account during this thesis regarding the creation and development of our methods. These issues revolve around: the prediction of trajectory durations, the reduction of the cognitive and motor load imposed on the user, the need for speed (soft real-time) and accuracy in predictions.
Cette thèse se situe à l’intersection de l’apprentissage automatique et de la robotique humanoïde, dans la thématique de l’interaction homme-robot, et dans le domaine de la cobotique (robotique collaborative). Elle se focalise sur les interactions non verbales humain-robot, en particulier sur l’interaction gestuelle. La prédiction de l'intention, la compréhension et la reproduction de gestes sont donc des questions centrales de cette thèse. Dans un premier temps, il s’agit de faire apprendre au robot des gestes par démonstration : un utilisateur prend le robot par le bras et lui fait réaliser les gestes à apprendre et ce, plusieurs fois. Le robot doit ensuite être capable de reproduire ces différents mouvements tout en les généralisant pour s’adapter au contexte. Pour cela, à l’aide de ses capteurs proprioceptifs, il interprète les signaux perçus pour comprendre le mouvement que lui fait réaliser l’utilisateur, afin d’en générer des similaires par la suite. Dans un second temps, le robot apprend à reconnaître l’intention de l’humain avec lequel il interagit et cela, à partir des gestes que ce dernier initie : il s’agit ensuite pour le robot de produire les gestes adaptés à la situation et correspondant aux attentes de l’utilisateur. Cela nécessite que le robot comprenne la gestuelle de l’utilisateur. Pour cela, différentes modalités perceptives ont été explorées. À l’aide de capteurs proprioceptifs, le robot ressent les gestes de l’utilisateur au travers de son propre corps : il s’agit alors d’interaction physique humain-robot. À l’aide de capteurs visuels, le robot interprète le mouvement de la tête de l’utilisateur. Enfin, à l’aide de capteurs externes, le robot reconnaît et prédit le mouvement corps entier de l’utilisateur. Dans ce dernier cas, l’utilisateur porte lui-même des capteurs (vêtement X-Sens) qui transmettent sa posture au robot. De plus, le couplage de ces modalités a été étudié. D’un point de vue méthodologique, nous venons de voir que les questions d’apprentissage et de reconnaissance de séries temporelles (les gestes) ont été centrales dans cette thèse. Pour cela, deux approches ont été développées. La première est fondée sur la modélisation statistique de primitives de mouvements (correspondant aux gestes) : les ProMPs. La seconde,ajoute à la première du Deep Learning, par l’utilisation d’auto-encodeurs, afin de modéliser des gestes corps entier contenant beaucoup d’informations, tout en permettant une prédiction en temps réel mou. Lors de cette thèse, différents enjeux ont notamment été pris en compte pour la création et le développement de nos méthodes. Ces enjeux concernent : la prédiction des durées des trajectoires, la réduction de la charge cognitive et motrice imposée à l’utilisateur, le besoin de rapidité (temps réel mou) et de précision dans les prédictions.
Fichier principal
Vignette du fichier
theseCOmpr.pdf (9.28 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

tel-01966873 , version 1 (30-12-2018)

Identifiers

  • HAL Id : tel-01966873 , version 1

Cite

Oriane Dermy. Prédiction du mouvement humain pour la robotique collaborative : du geste accompagné au mouvement corps entier.. Intelligence artificielle [cs.AI]. Université de Lorraine, 2018. Français. ⟨NNT : 2018LORR0227⟩. ⟨tel-01966873⟩
599 View
988 Download

Share

Gmail Facebook X LinkedIn More