Viscous and frictional strength of the lithospheric mantle : microstructural characterization of experimentally deformed polycrystalline Olivine - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Viscous and frictional strength of the lithospheric mantle : microstructural characterization of experimentally deformed polycrystalline Olivine

Résistance visqueuse et frictionnelle du manteau lithosphérique : caractérisation microstructurale de l'olivine polycristalline déformée expérimentalement

Résumé

Convection in Earth’s mantle is the major driving force behind the movement of tectonic plates. While the lower parts of the upper mantle deform in a ductile way, the plates themselves are rheologically more rigid than the asthenosphere beneath. To understand how convection yields tectonic plates, it is vital to quantify the viscous and frictional strength of the lithospheric mantle. Yet to date, the rheology of the uppermost mantle just below the Mohorovicic discontinuity is still poorly understood. Furthermore, the early stages of visco-plastic deformation at intermediate temperatures (600 – 1000 °C) relevant of the lithospheric mantle are not well documented or quantified. In the past, most deformation experiments were performed at high temperatures (> 1200 °C). To provide accurate mechanical values for the lithospheric mantle, we need mechanical data but also a characterization of the associated microstructure to understand the deformation mechanisms at play during permanent deformation of olivine-rich rocks. In this thesis, I have performed deformation experiments in axial compression using a Paterson press (at Géosciences Montpellier, University of Montpellier, France) at high pressure and temperature (300 MPa, 1000 -12000 °C) and in torsion using a low to high velocity rotary shear frictional testing machine (Rock Mechanics Laboratory, Durham University, UK) at room pressure and temperatures. The recovered samples were characterized using scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. After an introduction chapter where the state-of-the-art is detailed, and a chapter focusing on experimental and analytical methods used during scientific projects, the thesis is organized as three subsequent chapters, each of them corresponding to three scientific articles: one is published (1) Stress evolution and associated microstructure during transient creep of olivine at 1000-1200 °C (Phys. Earth Planet. Int., doi: 10.1016/j.pepi.2018.03.002.); and the two others are in preparation, (2) Disclination density in polycrystalline olivine experimentally deformed at 1000 °C and 1200 °C; and (3) Shear deformation of nano- and micro-crystalline olivine at seismic slip rates. Chapter III has shown that the observed mechanical hardening can not come from a simple increase in dislocation density (e.g., entanglement) and that other mechanisms must be at play to compensate for the limitations of dislocation slip. For the first time, in chapter IV the densities of geometrically necessary dislocations (GND, translational defects) and disclinations (rotational defects) are quantified on a series of rocks deformed at different temperatures, finite strains and stress levels. No correlation has been identified between disclination density and stress, strain or GND. The role of the disclinations will therefore be limited to migration at grain boundaries, which may be sufficient to unblock dislocations in the polycrystalline olivine aggregate. In chapter V, torsion experiments confirmed the negligible effect of grain size (olivine from 0.07 to 70 μm) on the drastic decrease of the coefficient of friction, but the characterization of the samples did permit to shed light on the main mechanism of deformation. Thanks to an experimental approach and up-to-date material characterization, this thesis permitted better characterization of the brittle-ductile transition of a fine-grained dunite-type rock subjected to permanent deformation at uppermost mantle temperatures.
La convection dans le manteau terrestre est la principale force motrice du mouvement des plaques tectoniques. Alors que les parties inférieures du manteau supérieur se déforment de manière ductile, les plaques tectoniques sont rhéologiquement plus rigides que l'asthénosphère sous-jacente. Pour comprendre le couplage entre la convection profonde et les plaques tectoniques à la surface de la Terre, il est essentiel de comprendre les mécanismes de déformation visqueuse et frictionnelle du manteau lithosphérique. Mais à ce jour, la rhéologie du manteau supérieur juste au-dessous de la discontinuité de Mohorovicic est encore mal comprise. De plus, les premiers stades de la déformation viscoplastique à des températures intermédiaires (600-1000 ° C) pertinentes pour le manteau lithosphérique, ne sont ni bien documentés ni quantifiés. Dans le passé, la plupart des expériences de déformation étaient effectuées à des températures très élevées (> 1200 ° C). Pour fournir des valeurs mécaniques précises pour le manteau lithosphérique, nous avons besoin de données mécaniques mais aussi de la caractérisation de la microstructure associée pour comprendre la physique des mécanismes en jeu lors de la déformation permanente des roches riches en olivine. Dans cette thèse, nous avons réalisé des expériences de déformation en compression axiale à l'aide d'une presse Paterson (Géosciences Montpellier, Université de Montpellier, France) à haute pression et température (300 MPa, 1000-12000 ° C) et en torsion (‘rotary shear frictional testing machine’ au laboratoire de mécanique des roches, université de Durham, Royaume-Uni) à pression et température ambiantes. Les échantillons ont été caractérisés par microscopie électronique à balayage, diffraction d’ d'électrons rétrodiffusés et microscopie électronique en transmission. Après un chapitre d'introduction où l'état de l'art est détaillé et un chapitre consacré aux méthodes expérimentales et analytiques utilisées dans les projets scientifiques, la thèse s'organise en trois chapitres, chacun correspondant à trois articles scientifiques: le premier est publié (1) Évolution de la contrainte et des microstructures associées au fluage transitoire de l'olivine à 1000-1200 °C (Phys. Earth Planet. Int., doi: 10.1016/ j.pepi.2018.03.002. (https: //hal.archives- ouvertes.fr/hal-01746122) et les deux autres sont en préparation, (2) Densité de disclinaisons dans l'olivine polycristalline déformée expérimentalement à 1000 ° C et 1200 ° C (3) Déformation par cisaillement de l'olivine nano- et micro-cristalline. Le premier projet du chapitre III a montré que le durcissement mécanique observé ne peut pas provenir d'une simple augmentation de la densité de dislocations (e.g., la forêt) et que d'autres mécanismes doivent être mis en œuvre pour compenser les limites de glissements des dislocations. Dans le chapitre IV, les densités de dislocation géométriquement nécessaires (GND, défauts de translation) et les disclinaisons (défauts de rotation) sont quantifiées sur une série de roches déformées à différentes températures, déformations finies et niveaux de contrainte, mais aucune corrélation n'a été identifiée entre la densité de disclinaisons, et la contrainte, la déformation finie, ou la densité de GND. Le rôle des disclinaisons serait donc limité à la migration aux joints de grains, ce qui peut être suffisant pour débloquer les dislocations dans l'agrégat d'olivine polycristalline. Au chapitre V, les expériences de torsion ont confirmé l'effet négligeable de la taille du grain (olivine de 0,7 à 70 µm) sur la diminution drastique du coefficient de frottement, mais la caractérisation des échantillons n’a pas permis d'élucider le mécanisme principal de déformation. Cette thèse a permis de mieux caractériser la transition fragile-ductile d'une roche de type dunite à grains fins soumise à une déformation permanente aux températures du manteau sommitale.

Domaines

Tectonique
Fichier principal
Vignette du fichier
2018_THIEME_archivage.pdf (5.39 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01982202 , version 1 (15-01-2019)
tel-01982202 , version 2 (22-02-2019)

Identifiants

  • HAL Id : tel-01982202 , version 2

Citer

Manuel Thieme. Viscous and frictional strength of the lithospheric mantle : microstructural characterization of experimentally deformed polycrystalline Olivine. Tectonics. Université Montpellier, 2018. English. ⟨NNT : 2018MONTG061⟩. ⟨tel-01982202v2⟩
248 Consultations
257 Téléchargements

Partager

Gmail Facebook X LinkedIn More