Transfer Learning for Image Classification - TEL - Thèses en ligne
Thèse Année : 2017

Transfer Learning for Image Classification

Transfert de connaissances pour la classification des images -

Résumé

When learning a classification model for a new target domain with only a small amount of training samples, brute force application of machine learning algorithms generally leads to over-fitted classifiers with poor generalization skills. On the other hand, collecting a sufficient number of manually labeled training samples may prove very expensive. Transfer Learning methods aim to solve this kind of problems by transferring knowledge from related source domain which has much more data to help classification in the target domain. Depending on different assumptions about target domain and source domain, transfer learning can be further categorized into three categories: Inductive Transfer Learning, Transductive Transfer Learning (Domain Adaptation) and Unsupervised Transfer Learning. We focus on the first one which assumes that the target task and source task are different but related. More specifically, we assume that both target task and source task are classification tasks, while the target categories and source categories are different but related. We propose two different methods to approach this ITL problem. In the first work we propose a new discriminative transfer learning method, namely DTL, combining a series of hypotheses made by both the model learned with target training samples, and the additional models learned with source category samples. Specifically, we use the sparse reconstruction residual as a basic discriminant, and enhance its discriminative power by comparing two residuals from a positive and a negative dictionary. On this basis, we make use of similarities and dissimilarities by choosing both positively correlated and negatively correlated source categories to form additional dictionaries. A new Wilcoxon-Mann-Whitney statistic based cost function is proposed to choose the additional dictionaries with unbalanced training data. Also, two parallel boosting processes are applied to both the positive and negative data distributions to further improve classifier performance. On two different image classification databases, the proposed DTL consistently out performs other state-of-the-art transfer learning methods, while at the same time maintaining very efficient runtime. In the second work we combine the power of Optimal Transport and Deep Neural Networks to tackle the ITL problem. Specifically, we propose a novel method to jointly fine-tune a Deep Neural Network with source data and target data. By adding an Optimal Transport loss (OT loss) between source and target classifier predictions as a constraint on the source classifier, the proposed Joint Transfer Learning Network (JTLN) can effectively learn useful knowledge for target classification from source data. Furthermore, by using different kind of metric as cost matrix for the OT loss, JTLN can incorporate different prior knowledge about the relatedness between target categories and source categories. We carried out experiments with JTLN based on Alexnet on image classification datasets and the results verify the effectiveness of the proposed JTLN in comparison with standard consecutive fine-tuning. To the best of our knowledge, the proposed JTLN is the first work to tackle ITL with Deep Neural Networks while incorporating prior knowledge on relatedness between target and source categories. This Joint Transfer Learning with OT loss is general and can also be applied to other kind of Neural Networks.
Lors de l’apprentissage d’un modèle de classification pour un nouveau domaine cible avec seulement une petite quantité d’échantillons de formation, l’application des algorithmes d’apprentissage automatiques conduit généralement à des classifieurs surdimensionnés avec de mauvaises compétences de généralisation. D’autre part, recueillir un nombre suffisant d’échantillons de formation étiquetés manuellement peut s’avérer très coûteux. Les méthodes de transfert d’apprentissage visent à résoudre ce type de problèmes en transférant des connaissances provenant d’un domaine source associé qui contient beaucoup plus de données pour faciliter la classification dans le domaine cible. Selon les différentes hypothèses sur le domaine cible et le domaine source, l’apprentissage par transfert peut être classé en trois catégories: apprentissage par transfert inductif, apprentissage par transfert transducteur (adaptation du domaine) et apprentissage par transfert non surveillé. Nous nous concentrons sur le premier qui suppose que la tâche cible et la tâche source sont différentes mais liées. Plus précisément, nous supposons que la tâche cible et la tâche source sont des tâches de classification, tandis que les catégories cible et les catégories source sont différentes mais liées. Nous proposons deux méthodes différentes pour aborder ce problème. Dans le premier travail, nous proposons une nouvelle méthode d’apprentissage par transfert discriminatif, à savoir DTL(Discriminative Transfer Learning), combinant une série d’hypothèses faites à la fois par le modèle appris avec les échantillons de cible et les modèles supplémentaires appris avec des échantillons des catégories sources. Plus précisément, nous utilisons le résidu de reconstruction creuse comme discriminant de base et améliore son pouvoir discriminatif en comparant deux résidus d’un dictionnaire positif et d’un dictionnaire négatif. Sur cette base, nous utilisons des similitudes et des dissemblances en choisissant des catégories sources positivement corrélées et négativement corrélées pour former des dictionnaires supplémentaires. Une nouvelle fonction de coût basée sur la statistique de Wilcoxon-Mann-Whitney est proposée pour choisir les dictionnaires supplémentaires avec des données non équilibrées. En outre, deux processus de Boosting parallèles sont appliqués à la fois aux distributions de données positives et négatives pour améliorer encore les performances du classificateur. Sur deux bases de données de classification d’images différentes, la DTL proposée surpasse de manière constante les autres méthodes de l’état de l’art du transfert de connaissances, tout en maintenant un temps d’exécution très efficace. Dans le deuxième travail, nous combinons le pouvoir du transport optimal (OT) et des réseaux de neurones profond (DNN) pour résoudre le problème ITL. Plus précisément, nous proposons une nouvelle méthode pour affiner conjointement un réseau de neurones avec des données source et des données cibles. En ajoutant une fonction de perte du transfert optimal (OT loss) entre les prédictions du classificateur source et cible comme une contrainte sur le classificateur source, le réseau JTLN (Joint Transfer Learning Network) proposé peut effectivement apprendre des connaissances utiles pour la classification cible à partir des données source. En outre, en utilisant différents métriques comme matrice de coût pour la fonction de perte du transfert optimal, JTLN peut intégrer différentes connaissances antérieures sur la relation entre les catégories cibles et les catégories sources. Nous avons effectué des expérimentations avec JTLN basées sur Alexnet sur les jeux de données de classification d’image et les résultats vérifient l’efficacité du JTLN proposé. A notre connaissances, ce JTLN proposé est le premier travail à aborder ITL avec des réseaux de neurones profond (DNN) tout en intégrant des connaissances antérieures sur la relation entre les catégories cible et source.
Fichier principal
Vignette du fichier
TH_T2615_ylu.pdf (2.82 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02065405 , version 1 (12-03-2019)

Identifiants

  • HAL Id : tel-02065405 , version 1

Citer

Ying Lu. Transfer Learning for Image Classification. Other. Université de Lyon, 2017. English. ⟨NNT : 2017LYSEC045⟩. ⟨tel-02065405⟩
804 Consultations
2539 Téléchargements

Partager

More