Person re-identification in images with deep learning - TEL - Thèses en ligne
Thèse Année : 2018

Person re-identification in images with deep learning

Ré-identification de personnes dans des images par apprentissage automatique

Résumé

Video surveillance systems are of a great value for public safety. As one of the most import surveillance applications, person re-identification is defined as the problem of identifying people across images that have been captured by different surveillance cameras without overlapping fields of view. With the increasing need for automated video analysis, this task is increasingly receiving attention. However, this problem is challenging due to the large variations of lighting, pose, viewpoint and background. To tackle these different difficulties, in this thesis, we propose several deep learning based approaches to obtain a better person re-identification performance in different ways. In the first proposed approach, we use pedestrian attributes to enhance the person re-identification. The attributes are defined as semantic mid-level descriptions of persons, such as gender, accessories, clothing etc. They could be helpful to extract characteristics that are invariant to the pose and viewpoint variations thanks to the descriptor being on a higher semantic level. In order to make use of the attributes, we propose a CNN-based person re-identification framework composed of an identity classification branch and of an attribute recognition branch. At a later stage, these two cues are combined to perform person re-identification. Secondly, among the challenges, one of the most difficult is the variation under different viewpoint. The same person shows very different appearances from different points of view. To deal with this issue, we consider that the images under various orientations are from different domains. We propose an orientation-specific CNN. This framework performs body orientation regression in a gating branch, and in another branch learns separate orientation-specific layers as local experts. The combined orientation-specific CNN feature representations are used for the person re-identification task. Thirdly, learning a similarity metric for person images is a crucial aspect of person re-identification. As the third contribution, we propose a novel listwise loss function taking into account the order in the ranking of gallery images with respect to different probe images. Further, an evaluation gain-based weighting is introduced in the loss function to optimize directly the evaluation measures of person re-identification. At the end, in a large gallery set, many people could have similar clothing. In this case, using only the appearance of single person leads to strong ambiguities. In realistic settings, people often walk in groups rather than alone. As the last contribution, we propose to learn a deep feature representation with displacement invariance for group context and introduce a method to combine the group context and single-person appearance. For all the four contributions of this thesis, we carry out extensive experiments on popular benchmarks and datasets to demonstrate the effectiveness of the proposed systems.
La vidéosurveillance est d’une grande valeur pour la sécurité publique. En tant que l’un des plus importantes applications de vidéosurveillance, la ré-identification de personnes est définie comme le problème de l’identification d’individus dans des images captées par différentes caméras de surveillance à champs non-recouvrants. Cependant, cette tâche est difficile à cause d’une série de défis liés à l’apparence de la personne, tels que les variations de poses, de point de vue et de l’éclairage etc. Pour régler ces différents problèmes, dans cette thèse, nous proposons plusieurs approches basées sur l’apprentissage profond de sorte d’améliorer de différentes manières la performance de ré-identification. Dans la première approche, nous utilisons les attributs des piétons tels que genre, accessoires et vêtements. Nous proposons un système basé sur un réseau de neurones à convolution(CNN) qui est composé de deux branches : une pour la classification d’identité et l’autre pour la reconnaissance d’attributs. Nous fusionnons ensuite ces deux branches pour la ré-identification. Deuxièmement, nous proposons un CNN prenant en compte différentes orientations du corps humain. Le système fait une estimation de l’orientation et, de plus, combine les caractéristiques de différentes orientations extraites pour être plus robuste au changement de point de vue. Comme troisième contribution de cette thèse, nous proposons une nouvelle fonction de coût basée sur une liste d’exemples. Elle introduit une pondération basée sur le désordre du classement et permet d’optimiser directement les mesures d’évaluation. Enfin, pour un groupe de personnes, nous proposons d’extraire une représentation de caractéristiques visuelles invariante à la position d’un individu dans une image de group. Cette prise en compte de contexte de groupe réduit ainsi l’ambigüité de ré-identification. Pour chacune de ces quatre contributions, nous avons effectué de nombreuses expériences sur les différentes bases de données publiques pour montrer l’efficacité des approches proposées.
Fichier principal
Vignette du fichier
these.pdf (42.56 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02090746 , version 1 (05-04-2019)
tel-02090746 , version 2 (18-04-2019)

Identifiants

  • HAL Id : tel-02090746 , version 2

Citer

Yiqiang Chen. Person re-identification in images with deep learning. Computer Vision and Pattern Recognition [cs.CV]. Université de Lyon, 2018. English. ⟨NNT : 2018LYSEI074⟩. ⟨tel-02090746v2⟩
432 Consultations
561 Téléchargements

Partager

More