Effect of condensable materials during the gas phase polymerization of ethylene on supported catalysts - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Effect of condensable materials during the gas phase polymerization of ethylene on supported catalysts

Effet des matériaux condensables au cours de la polymérisation en phase gazeuse d'éthylène sur des catalyseurs supporté

Résumé

Fluidized bed reactors (FBR) are the only commercially viable technology for the production of polyethylene in the gas phase since the polymerization is highly exothermic and the FBR is the only type of gas phase reactor that offers adequate possibilities of heat transfer. The highly exothermic nature of this polymerization effectively poses many problems for gas phase operation and can limit the production of a certain process. However, in recent years the fluidized bed processes have been improved with new technologies. In particular, the addition of inert (usually liquefied) hydrocarbons allows one to increase the amount of heat removed from the reactor. These compounds increase the heat capacity of the gas phase and, if injected in liquid form, also evaporate and thus absorb even more heat from the reaction medium efficiently. This is known as a condensed mode operation. In it, one uses compounds that can be liquefied in the recycle condenser, and which are called Induced Condensing Agents (ICA). The use of ICA is extremely important from an industrial point of view. The injection of ICA can have many different physical effects at the level of the growing polymer particles. For instance, adding these compounds can cause changes in solubility and other physical properties, which can facilitate the transport of ethylene and hydrogen to the active sites of the catalysts. It is thus very important that the physical phenomena related to the sorption equilibrium of the monomer(s) and other species from the gas phase to the polymer phase, and their diffusion on the polymer matrix at the active sites should be accounted for. In addition to having an effect on the kinetics, these phenomena can also impact the structure of the polymer molecules and consequently qualify the characteristics of the polymer. Identifying the behavior of these phenomena under process conditions and control variables of the hydrogen/ethylene ratio and the comonomer/ethylene ratio with ICA are central objectives of this study. A series of ethylene homo- and co-polymerizations in the gas phase were carried out using a commercial Ziegler-Natta catalyst in the presence of ICA (propane, n-pentane, and n-hexane). We investigated the effect of temperatures, the partial pressure of ICA, hydrogen, and comonomers on the behavior of the polymerization. It was found that adding ICA significantly increased the reaction rate and average molecular weights at a given temperature. It was also unexpectedly observed that increasing the reactor temperature in the presence of an ICA actually led to a decrease in the overall reaction rate. These results were attributed to the socalled cosolubility effect. In reactions in the presence of different hydrogen concentrations, for an ICA/C2 ratio much larger than the H2/C2 ratio, the effect of ICA on ethylene solubility can counteract the decrease in average molecular weight caused by the presence of hydrogen. The impact of ICA on the rates of copolymerization reactions is more pronounced in the initial stages, losing strength due to the effect of the comonomer. Finally, an evaluation of the kinetics of crystallization under isothermal conditions for mixtures of different ICA:HDPE concentrations showed that the crystallization time is significantly higher for systems rich in ICA than for dry polymer
Les réacteurs à lit fluidisé (FBR) constituent la seule technologie viable sur le plan commercial pour la production de polyéthylène en phase gaz, car la polymérisation est hautement exothermique et le FBR est le seul type de réacteur en phase gaz offrant des possibilités suffisantes de transfert de chaleur. La nature hautement exothermique de cette polymérisation pose effectivement de nombreux problèmes pour le fonctionnement en phase gaz et peut limiter la production de certains procédés. Au cours des dernières années, les procédés en lit fluidisé ont été améliorés par de nouvelles technologies. En particulier, l'ajout d'hydrocarbures inertes (généralement liquides) permet d'augmenter la quantité de chaleur évacuée du réacteur. Ces composés augmentent la capacité calorifique de la phase gazeuse et, s’ils sont injectés sous forme liquide, s’évaporent également et absorbent ainsi encore plus efficacement la chaleur du milieu réactionnel. C’est ce qu’on appelle le fonctionnement en mode condensé. On y utilise des composés qui peuvent être liquéfiés dans le condenseur de recyclage et qui sont appelés agents de condensation induits (en anglais : Induced Condensing Agents - ICA). L’utilisation de l’ICA est extrêmement importante d'un point de vue industriel. L’injection d’ICA peut avoir de nombreux effets physiques différents au niveau des particules de polymère en croissance. Par exemple, l’ajout de ces composés peut entraîner des modifications de la solubilité et d’autres propriétés physiques, ce qui peut faciliter le transport de l’éthylène et de l’hydrogène vers les sites actifs des catalyseurs. Il est donc très important que les phénomènes physiques liés à l'équilibre de sorption entre la phase gaz et la phase polymère du ou des monomères et d'autres espèces, ainsi que leur diffusion dans la matrice polymère au niveau des sites actifs, soient pris en compte. En plus d'avoir un effet sur la cinétique, ces phénomènes peuvent également impacter la structure des molécules de polymère et par conséquent changer les caractéristiques du polymère. Identifier le comportement de ces phénomènes dans les conditions de la procédé et les variables de contrôle du rapport hydrogène / éthylène et du rapport comonomère / éthylène avec l'ICA sont les objectifs centraux de cette étude. Une série d’homo- et co-polymérisations d’éthylène en phase gazeuse a été réalisée en utilisant un catalyseur commercial Ziegler-Natta en présence de l’ICA (propane, n pentane et n-hexane). Nous avons étudié l’effet des températures, de la pression partielle de l’ICA, de l'hydrogène et des comonomères sur le comportement de la polymérisation. Il a été constaté que l’ajout de l’ICA augmentait significativement la vitesse de réaction ainsi que les poids moléculaires moyens à une température donnée. De manière inattendue, il a également été observé que l’augmentation de la température du réacteur en présence d’ICA entraînait en réalité une diminution de la vitesse de réaction globale. Ces résultats ont été attribués à l’effet de cosolubilité. Dans les réactions en présence de différentes concentrations en hydrogène, pour un rapport ICA/C2 beaucoup plus grand que le rapport H2/C2, l'effet de l’ICA sur la solubilité de l’éthylène peut compenser la diminution en taille des molécules provoquée par la présence d’hydrogène. L’impact de l’ICA sur les taux de réaction de copolymérisation est plus prononcé aux stades initiaux, perdant de son efficacité en raison de l'effet de comonomère. Enfin, une évaluation de la cinétique de cristallisation dans des conditions isothermes pour des mélanges de différentes concentrations ICA: HDPE a montré que le temps de cristallisation est significativement plus long pour les systèmes riches en ICA que pour les polymères secs
Fichier principal
Vignette du fichier
TH2019NASCIMENTODEANDRADEFabiana.pdf (5.97 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02091507 , version 1 (05-04-2019)

Identifiants

  • HAL Id : tel-02091507 , version 1

Citer

Fabiana Nascimento de Andrade. Effect of condensable materials during the gas phase polymerization of ethylene on supported catalysts. Chemical and Process Engineering. Université de Lyon, 2019. English. ⟨NNT : 2019LYSE1016⟩. ⟨tel-02091507⟩
270 Consultations
602 Téléchargements

Partager

Gmail Facebook X LinkedIn More