Skip to Main content Skip to Navigation
New interface

Organically-modified ceramic membranes for solvent nanofiltration : fabrication and transport studies

Abstract : Solvent nanofiltration is a potential technology to recover solvents. For this application, a chemically stable membrane that can endure continuous exposure towards organic solvents is required. This thesis deals with the preparation of chemically stable NF membranes through modification of mesoporous ceramic substrate by means of grafting and studying of their solvent and solute transport properties. In Chapter 1, the background of the grafting technique as well as studies on the SRNF transport behavior found in the literature was presented.In Chapter 2 and 6 of this thesis, mesoporous y-alumina UF membranes were grafted by hydrophobic and hydrophilic organic moieties to decrease the membrane pore diameter of the existing y-alumina UF membrane down to the nanofiltration range. In Chapter 5, the use of coupling agent to couple the grafted moiety forming a polymer network inside the ceramic pores during grafting results in a smaller membrane pore, but at the cost of a lower solvent permeability, when compared with PDMS-grafted alumina membranes where no coupling was applied. In Chapter 6, the grafting performance of γ-Al2O3 powder with various PEG grafting agents having different molecular weights, alkoxy groups, and ureido functionalities were analysed by TGA, 29Si-NMR, FTIR, and BET. The grafting densities are influenced by the molecular weights, the presence of the ureido functionality, and the number of hydrolyzable groups of the grafting agents. The transport behavior of PDMS grafted ceramic membranes and PEG grafted ceramic membranes were studied in Chapter 3, 4, and 6. In Chapter 3, the solvent transport behavior of PDMS grafted ceramic membranes was described by incorporating solvent sorption terms in the Hagen-Pouiseuille equation. A more closed membrane structure is realized when the solvent is strongly sorbed in the grafted moiety. In Chapter 4, the applicability of the existing solute rejection models based on size-exclusion mechanism to describe the solute rejection of membranes towards different types of solvent and solute were assessed. A strong function of rejection behavior with the ratio of the solute diameter versus the membrane pore diameter was observed, indicating that the size-exclusion mechanism may be applicable. Three rejection models based on size-exclusion, namely the Ferry, Verniory, and SHP models were used to predict the rejection of several solutes using pore diameter information from the N2 physisorption measurement when no solvent is present. For dye, PS, and PEG solutes in toluene, the experimental data fall well above the predicted σ for Ferry, Verniory, and SHP model suggesting that the membrane actual pore diameter in the presence of strongly sorbed solvent like toluene is smaller than that when no solvent is present, assuming that there is no important solvent-solute or solute-membrane interaction present in the observed rejection behavior. This may explain the higher rejection of solutes in nonpolar solvents like toluene than that in polar solvents such as isopropanol for PDMS grafted ceramic membranes. In Chapter 6, the permeability behavior of PEG grafted y-alumina membranes with respect to different types of permeating solvent (polar and nonpolar) was studied. A linear relationship between flux and TMP was observed, as was also found for PDMS grafted y-Al2O3 membranes. This indicates the absence of shear-flow induced behaviour in the applied TMP. A higher selectivity of Sudan Black in ethanol than in hexane accompanied by a lower permeability of ethanol than hexane were observed. Here also this phenomenon is explained by the difference in solvent sorption of the grafted moiety for different types of permeating solvents. Finally, the general conclusions and future work are presented in Chapter 7.
Document type :
Complete list of metadata

Cited literature [138 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Monday, September 16, 2019 - 12:03:06 PM
Last modification on : Friday, August 5, 2022 - 11:01:00 AM
Long-term archiving on: : Saturday, February 8, 2020 - 4:55:53 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02289027, version 1



Cheryl Raditya Tanardi. Organically-modified ceramic membranes for solvent nanofiltration : fabrication and transport studies. Material chemistry. Université Montpellier; Universiteit Twente (Enschede, Nederland); Katholieke universiteit te Leuven (1970-..), 2015. English. ⟨NNT : 2015MONTS259⟩. ⟨tel-02289027⟩



Record views


Files downloads