Skip to Main content Skip to Navigation
New interface

Implémentations d'optimisation-simulation pour l'harmonisation des opérations dans les grands aéroports

Abstract : The constant growth of air traffic, especially in Europe, is putting pressure on airports, which, in turn, are suffering congestion problems. The airspace surrounding airport, terminal manoeuvring area (TMA), is particularly congested, since it accommodates all the converging traffic to and from airports. Besides airspace, airport ground capacity is also facing congestion problems, as the inefficiencies coming from airspace operations are transferred to airport ground and vice versa. The main consequences of congestion at airport airspace and ground, is given by the amount of delay generated, which is, in turn, transferred to other airports within the network. Congestion problems affect also the workload of air traffic controllers that need to handle this big amount of traffic. This thesis deals with the optimization of the integrated airport operations, considering the airport from a holistic point of view, by including operations such as airspace and ground together. Unlike other studies in this field of research, this thesis contributes by supporting the decisions of air traffic controllers regarding aircraft sequencing and by mitigating congestion on the airport ground area. The airport ground operations and airspace operations can be tackled with two different levels of abstractions, macroscopic or microscopic, based on the time-frame for decision-making purposes. In this thesis, the airport operations are modeled at a macroscopic level. The problem is formulated as an optimization model by identifying an objective function that considers the amount of conflicts in the airspace and capacity overload on the airport ground; constraints given by regulations on separation minima between consecutive aircraft in the airspace and on the runway; decision variables related to aircraft entry time and entry speed in the airspace, landing runway and departing runway choice and pushback time. The optimization model is solved by implementing a sliding window approach and an adapted version of the metaheuristic simulated annealing. Uncertainty is included in the operations by developing a simulation model and by including stochastic variables that represent the most significant sources of uncertainty when considering operations at a macroscopic level, such as deviation from the entry time in the airspace, deviation in the average taxi time and deviation in the pushback time.
Complete list of metadata

Cited literature [152 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Friday, May 29, 2020 - 2:28:10 PM
Last modification on : Wednesday, November 3, 2021 - 6:41:12 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02329839, version 2



Paolo Maria Scala. Implémentations d'optimisation-simulation pour l'harmonisation des opérations dans les grands aéroports. Infrastructures de transport. Université Paul Sabatier - Toulouse III, 2019. Français. ⟨NNT : 2019TOU30120⟩. ⟨tel-02329839v2⟩



Record views


Files downloads