Electron and phonon transport in disordered thermoelectric materials : dimensional confinement, resonant scattering and localization
Transport d'électrons et de phonons dans les matériaux thermoélectriques désordonnés : confinement dimensionnel, diffusion résonante et localisation
Abstract
Over the past decades, the increasingly pressing need for clean energy sources and the realization that a huge proportion of the world energy consumption is wasted in heat have prompted great interest in developing efficient thermoelectric generation modules. These devices could harvest waste heat from industrial processes or other sources, turning a temperature gradient into a voltage through the Seebeck effect. Efficient thermoelectric materials should exhibit a low thermal conductivity, a high electrical conductivity and a high Seebeck coefficient. Simultaneously optimizing these parameters is a great challenge of condensed matter physics and materials science. With a view to enhance the thermoelectric properties of several promising materials, we explore several strategies in which defects (atomic substitutions, vacancies…), disorder and dimensional confinement play a crucial role. We perform density functional theory calculations and projections on Wannier orbitals to construct realistic Hamiltonians and dynamical matrices describing their electronic and vibrational structure in real space. These parameters are then used to compute the thermoelectric transport properties using the Kubo formalism, the Boltzmann transport equation, the Landauer formalism, and the Chebyshev polynomial Green's function method that allows for an exact treatment of disorder. We investigate the electronic transport properties and thermoelectric performances of two promising materials for high-temperature power generation, strontium titanate and rutile titanium dioxide. Comparison of our predictions with a wealth of experimental data yields a very good agreement. We show that the increase of the Seebeck coefficient observed in strontium titanate superlayers, until now attributed to quantum confinement effects, is in fact well explained assuming delocalized electrons. The general effects of resonant states on electronic transport are explored in a model study, showing a sixfold increase of the thermoelectric performances. The particular case of strontium titanate is then examined, and localization effects are shown to destroy the performances if Vanadium atoms are introduced as resonant impurities. The influence of defects in two-dimensional materials is investigated. Contrary to adatoms, substitutions in transition metal dichalcogenides are shown to localize the charge carriers. We study the effect of vacancies on phonon transport in graphene, and determine the phonon-vacancy scattering rate. Comparison with thermal conductivity data for irradiated and finite-size graphene samples yields a very good agreement between theory and experiments
Ces dernières décennies, l'urgence croissante de la crise énergétique et la prise de conscience qu'une grande partie de l'énergie utilisée dans le monde est dissipée sous forme de chaleur ont provoqué un engouement pour le développement de modules thermoélectriques performants. Ces dispositifs pourraient récupérer la chaleur provenant de procédés industriels ou d'autres sources, transformant un gradient de température en voltage grâce à l'effet Seebeck. Les matériaux thermoélectriques performants doivent posséder une faible conductivité thermique, une haute conductivité électrique et un grand coefficient Seebeck. L'optimisation simultanée de ces paramètres est un défi majeur pour la physique de la matière condensée et la science des matériaux. Dans l'optique d'améliorer les propriétés thermoélectriques de plusieurs matériaux prometteurs, nous explorons plusieurs stratégies dans lesquelles les défauts (substitutions atomiques, lacunes…), le désordre et le confinement dimensionnel jouent un rôle central. Nous réalisons des calculs en théorie de la fonctionnelle densité et des projections sur des orbitales de Wannier afin de construire des Hamiltoniens et des matrices dynamiques réalistes décrivant leur structure électronique et vibrationnelle dans l'espace réel. Ces paramètres sont ensuite utilisés pour calculer les propriétés de transport thermoélectrique en utilisant le formalisme de Kubo, l'équation de Boltzmann, le formalisme de Landauer et la méthode Chebyshev polynomial Green's function, qui permet un traitement exact du désordre. Nous étudions les propriétés de transport électronique et les performances thermoélectriques de deux matériaux prometteurs pour la production d'énergie à hautes températures, le titanate de strontium et l'oxyde de titane rutile. Nous obtenons un très bon accord entre nos prédictions et un grand nombre de données expérimentales. Nous montrons que l'augmentation du coefficient Seebeck observée dans les superlayers de titanate de strontium, jusque-là attribuée à des effets de confinement quantique, est en réalité très bien expliquée par l'hypothèse d'électrons délocalisés. Nous explorons les effets généraux des états résonant sur le transport électronique dans le cadre d'une étude modèle, et nous trouvons une augmentation d'un facteur six des performances thermoélectriques. Nous examinons ensuite le cas particulier du titanate de strontium, et nous montrons que les performances sont détruites par des effets de localisation si des atomes de Vanadium sont introduits comme impuretés résonantes. Nous étudions l'influence des défauts dans les matériaux bidimensionnels. Contrairement aux adatomes, nous montrons que les substitutions dans les dichalcogénures de métaux de transition ont pour effet de localiser les porteurs de charge. Nous étudions l'effet des lacunes sur le transport de phonons dans le graphène, et nous déterminons les taux de diffusion phonon-lacune. Nous obtenons un très bon accord entre notre théorie et des mesures de conductivité thermique dans des échantillons de graphène irradiés et de tailles finies
Origin | Version validated by the jury (STAR) |
---|