Secure Distributed MapReduce Protocols : How to have privacy-preserving cloud applications? - TEL - Thèses en ligne
Thèse Année : 2019

Secure Distributed MapReduce Protocols : How to have privacy-preserving cloud applications?

Protocoles distribués et sécurisés pour le paradigme MapReduce : Comment avoir des applications dans les nuages respectueuses de la vie privée ?

Résumé

In the age of social networks and connected objects, many and diverse data are produced at every moment. The analysis of these data has led to a new science called "Big Data". To best handle this constant flow of data, new calculation methods have emerged.This thesis focuses on cryptography applied to processing of large volumes of data, with the aim of protection of user data. In particular, we focus on securing algorithms using the distributed computing MapReduce paradigm to perform a number of primitives (or algorithms) essential for data processing, ranging from the calculation of graph metrics (e.g. PageRank) to SQL queries (i.e. set intersection, aggregation, natural join).In the first part of this thesis, we discuss the multiplication of matrices. We first describe a standard and secure matrix multiplication for the MapReduce architecture that is based on the Paillier’s additive encryption scheme to guarantee the confidentiality of the data. The proposed algorithms correspond to a specific security hypothesis: collusion or not of MapReduce cluster nodes, the general security model being honest-but-curious. The aim is to protect the confidentiality of both matrices, as well as the final result, and this for all participants (matrix owners, calculation nodes, user wishing to compute the result). On the other hand, we also use the matrix multiplication algorithm of Strassen-Winograd, whose asymptotic complexity is O(n^log2(7)) or about O(n^2.81) which is an improvement compared to the standard matrix multiplication. A new version of this algorithm adapted to the MapReduce paradigm is proposed. The safety assumption adopted here is limited to the non-collusion between the cloud and the end user. The version uses the Paillier’s encryption scheme.The second part of this thesis focuses on data protection when relational algebra operations are delegated to a public cloud server using the MapReduce paradigm. In particular, we present a secureintersection solution that allows a cloud user to obtain the intersection of n > 1 relations belonging to n data owners. In this solution, all data owners share a key and a selected data owner sharesa key with each of the remaining keys. Therefore, while this specific data owner stores n keys, the other owners only store two keys. The encryption of the real relation tuple consists in combining the use of asymmetric encryption with a pseudo-random function. Once the data is stored in the cloud, each reducer is assigned a specific relation. If there are n different elements, XOR operations are performed. The proposed solution is very effective. Next, we describe the variants of grouping and aggregation operations that preserve confidentiality in terms of performance and security. The proposed solutions combine the use of pseudo-random functions with the use of homomorphic encryption for COUNT, SUM and AVG operations and order preserving encryption for MIN and MAX operations. Finally, we offer secure versions of two protocols (cascade and hypercube) adapted to the MapReduce paradigm. The solutions consist in using pseudo-random functions to perform equality checks and thus allow joining operations when common components are detected. All the solutions described above are evaluated and their security proven.
À l’heure des réseaux sociaux et des objets connectés, de nombreuses et diverses données sont produites à chaque instant. L’analyse de ces données a donné lieu à une nouvelle science nommée "Big Data". Pour traiter du mieux possible ce flux incessant de données, de nouvelles méthodes de calcul ont vu le jour. Les travaux de cette thèse portent sur la cryptographie appliquée au traitement de grands volumes de données, avec comme finalité la protection des données des utilisateurs. En particulier, nous nous intéressons à la sécurisation d’algorithmes utilisant le paradigme de calcul distribué MapReduce pour réaliser un certain nombre de primitives (ou algorithmes) indispensables aux opérations de traitement de données, allant du calcul de métriques de graphes (e.g. PageRank) aux requêtes SQL (i.e. intersection d’ensembles, agrégation, jointure naturelle). Nous traitons dans la première partie de cette thèse de la multiplication de matrices. Nous décrivons d’abord une multiplication matricielle standard et sécurisée pour l’architecture MapReduce qui est basée sur l’utilisation du chiffrement additif de Paillier pour garantir la confidentialité des données. Les algorithmes proposés correspondent à une hypothèse spécifique de sécurité : collusion ou non des nœuds du cluster MapReduce, le modèle général de sécurité étant honnête mais curieux. L’objectif est de protéger la confidentialité de l’une et l’autre matrice, ainsi que le résultat final, et ce pour tous les participants (propriétaires des matrices, nœuds de calcul, utilisateur souhaitant calculer le résultat). D’autre part, nous exploitons également l’algorithme de multiplication de matrices de Strassen-Winograd, dont la complexité asymptotique est O(n^log2(7)) soit environ O(n^2.81) ce qui est une amélioration par rapport à la multiplication matricielle standard. Une nouvelle version de cet algorithme adaptée au paradigme MapReduce est proposée. L’hypothèse de sécurité adoptée ici est limitée à la non-collusion entre le cloud et l’utilisateur final. La version sécurisée utilise comme pour la multiplication standard l’algorithme de chiffrement Paillier. La seconde partie de cette thèse porte sur la protection des données lorsque des opérations d’algèbre relationnelle sont déléguées à un serveur public de cloud qui implémente à nouveau le paradigme MapReduce. En particulier, nous présentons une solution d’intersection sécurisée qui permet à un utilisateur du cloud d’obtenir l’intersection de n > 1 relations appartenant à n propriétaires de données. Dans cette solution, tous les propriétaires de données partagent une clé et un propriétaire de données sélectionné partage une clé avec chacune des clés restantes. Par conséquent, alors que ce propriétaire de données spécifique stocke n clés, les autres propriétaires n’en stockent que deux. Le chiffrement du tuple de relation réelle consiste à combiner l’utilisation d’un chiffrement asymétrique avec une fonction pseudo-aléatoire. Une fois que les données sont stockées dans le cloud, chaque réducteur (Reducer) se voit attribuer une relation particulière. S’il existe n éléments différents, des opérations XOR sont effectuées. La solution proposée reste donc très efficace. Par la suite, nous décrivons les variantes des opérations de regroupement et d’agrégation préservant la confidentialité en termes de performance et de sécurité. Les solutions proposées associent l’utilisation de fonctions pseudo-aléatoires à celle du chiffrement homomorphe pour les opérations COUNT, SUM et AVG et à un chiffrement préservant l’ordre pour les opérations MIN et MAX. Enfin, nous proposons les versions sécurisées de deux protocoles de jointure (cascade et hypercube) adaptées au paradigme MapReduce. Les solutions consistent à utiliser des fonctions pseudo-aléatoires pour effectuer des contrôles d’égalité et ainsi permettre les opérations de jointure lorsque des composants communs sont détectés.(...)
Fichier principal
Vignette du fichier
2019CLFAC033_GIRAUD.pdf (1.69 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02409433 , version 1 (13-12-2019)

Identifiants

  • HAL Id : tel-02409433 , version 1

Citer

Matthieu Giraud. Secure Distributed MapReduce Protocols : How to have privacy-preserving cloud applications?. Cryptography and Security [cs.CR]. Université Clermont Auvergne [2017-2020], 2019. English. ⟨NNT : 2019CLFAC033⟩. ⟨tel-02409433⟩
334 Consultations
416 Téléchargements

Partager

More