Sliding dry contact under weak load : from surface's topographies to solids and interfaces dynamics
Contact sec glisssant sous faible charge : de la topographie des surfaces à la dynamique des solides de l'interface
Résumé
This PhD thesis addresses the issue of the dynamics, normal to the interface, of a dry steady-sliding contact between two random topographies under weak normal load. In this context, the motion of a slider under its own weight has been studied experimentally. Measurements, using a laser vibrometer, of the normal displacement and velocity of the slider confirm the existence of a transition, as the sliding speed increases, from a regime of permanent contact to a regime of lift-offs, shocks and rebounds.At low speed, the normal motion is due to a geometrical filtering of the topographies, the statistical and spectral properties of which have been described. The roles of the roughness, including its spectral breadth and correlation length, and of the apparent contact area have been identified and analyzed. Those results have been reproduced not only using numerical models, but also using analytical ones based on the extreme value theory. Bouncing-Ball-like models, the excitation of which is assumed to be given by the geometrical filtering, have also been implemented and match with a broad range of experimental observations in dynamical regime, from the transition to vibro-impacts.To test some of the hypothesis of the models, a new experimental multi-channel slider has been designed and has enabled access to the spatial localization of the transient micro-contacts between the antagonists surfaces. It has been shown that micro-contacts are governed by a characteristic length at low sliding speed and by a characteristic time at high speed. The rotational motion of the slider also increases with sliding speed, changing the micro-contact distribution along the surface of the slider.
Cette thèse porte sur la dynamique, normale à l'interface, d'un contact sec en glissement stationnaire entre deux surfaces de topographies aléatoires, soumis à une faible charge normale. Dans ce contexte, le mouvement d'un patin sous son propre poids a été étudié expérimentalement. Des mesures par vibrométrie laser du déplacement et de la vitesse normale du patin ont confirmé que, lorsque la vitesse de glissement augmente, le patin transite entre un régime où le contact est permanent vers un régime dynamique où il subit décollements, chocs et rebonds.À basse vitesse, le mouvement normal résulte d'un filtrage géométrique des topographies. Les caractéristiques statistiques et spectrales de ce mouvement ont pu être décrites. Les influences de la rugosité, de la longueur de corrélation, de la largeur de bande du spectre de rugosité et de l'aire apparente de contact ont été identifiées et analysées. Ces résultats ont pu être reproduits par des modèles numériques, mais aussi analytiques en adaptant la théorie des valeurs extrêmes. Des modèles de type Bouncing Ball, dont l'excitation est supposée donnée par le processus de filtrage géométrique, ont également été mis en place. Ils reproduisent une large gamme d'observations en régime dynamique, de la transition aux vibro-impacts.Pour tester certaines hypothèses des modèles mis en place, un patin multi-voies original a été développé et a permis d'accéder à la localisation spatiale des micro-contacts transitoires entre surfaces antagonistes. On observe que les micro-contacts sont gouvernés par une longueur caractéristique à basse vitesse de glissement et par un temps caractéristique à haute vitesse. Les rotations du patin deviennent importantes à haute vitesse, modifiant la répartition des micro-contacts à la surface du patin.
Origine | Version validée par le jury (STAR) |
---|
Loading...