Study of photoluminescence properties of nanoscale systems under high electric field
Etude des propriétés de photoluminescence de nano-matériaux sous champ électrique intense.
Résumé
In this thesis, the Laser-assisted Atom Probe Tomography is coupled in-situ with a photoluminescence (PL) bench, where the pulsed laser radiation is used to trigger the ion evaporation from the specimens and, simultaneously, to activate the emission from optically active centers present into the material. For this work, two different materials were selected: diamond nano-needles with embed- ded optically active defects (color centers) and a ZnO/(Mg,Zn)O multi-quantum-well (MQW) heterostructure, which contains quantum emitters of different thicknesses. Thanks to this original photoluminescence setup, the influence of the electric field on the fine structure of some color centers, embedded into the diamond nanoneedles, was observed. The first study focused on the neutral nitrogen-vacancy center (NV0), which is one among the most studied color centers in literature. The evolution of the NV0 optical signature, as a function of the applied bias, allowed to evaluate the mechanical stress (> 1 GPa) and the electric-field acting on diamond tips. These results demon- strate an original new method to perform contactless piezo-spectroscopy of nanoscale systems under uniaxial tensile stress, generated by the electric field. This method was applied also on another color center, which nature is still not clear in literature, emitting at 2.65 eV, and more sensitive than the NV0 color centers to the stress/strain field. New results on its opto-mechanical properties were obtained, but its identity still needs to be understood. Since the evaporation field of diamond is really high, the diamond nanoneedles were not analyzed using La-APT. Therefore the coupled in-situ technique was applied in order to study the ZnO/(Mg,Zn)O MQW heterostructure, accessing to the structure, composition and optical signature of the probed specimen in only one experiment. The photoluminescence spectra acquired by the specimen during its ongoing evaporation represents a unique source of information for the understanding of the mechanism of light-matter interaction and the physics of photoemission under high electric field. The correlation of the structural and optical information, related to this MQW heterostructure, demonstrates that the coupled in-situ technique can overlap the diffraction limit of the PL laser and that, as done for the diamond nanoneedles, is pos- sible to estimate the induced-tensile-stress. The results achieved by the in-situ coupling of the La-APT technique with the PL spec- troscopy show that such instrument is an innovative and powerful technique to perform research at the nanometric scale. For this reason, this work can open new perspectives for a deeply understanding of the physicics related to the studied systems in parallel with the continuous enhancement of the experimental setup.
Dans cette thèse, la tomographie à sonde atomique assistée par laser est couplée in situ à un banc de photoluminescence (PL), où le rayonnement laser pulsé est utilize pour déclencher l’évaporation ionique des échantillons et, simultanément, pour activer l’émission à partir des centres optiquement actifs présents dans le matériau. Pour ce travail, deux matériaux différents ont été sélectionnés : des nano-aiguilles de diamant avec des défauts optiquement actifs intégrés (centres de couleur) et une hétérostructure multi-quantique (MQW) ZnO / (Mg, Zn)O, qui contient des émetteurs quantiques d’épaisseurs différentes. Grâce à cette configuration originale de photoluminescence, l’influence du champ électrique sur la structure fine de certains centres de couleur, noyés dans les nano-aiguilles de diamant, a été observée. La première étude s’est concentrée sur le centre neutre de vacance d’azote (NV0), qui est l’un des centres de couleur les plus étudiés dans la littérature. L’évolution de la signature optique NV0, en fonction du biais appliqué, a permis d’évaluer la contrainte mécanique (> 1 GPa) et le champ électrique agissant sur les pointes de diamant. Ces résultats démontrent une nouvelle méthode originale pour effectuer la piezo-spectroscopie sans contact des systems nanométriques sous une contrainte de traction uniaxiale, générée par le champ électrique. Cette méthode a également été appliquée à un autre centre de couleur, dont la nature n’est toujours pas claire dans la littérature, émettant à 2,65 eV, et plus sensible que les centres de couleur NV0 au champ de contrainte / déformation. Des nouveaux résultats sur ses propriétés opto-mécaniques ont été obtenus, mais son identité reste à comprendre. Le champ d’évaporation du diamant étant très élevé, les nano-aiguilles de diamant n’ont pas été analysées à l’aide de La-APT. Par conséquent, la technique couplée in situ a été appliquée afin d’étudier l’hétérostructure ZnO / (Mg, Zn) O MQW, en accédant à la structure, à la composition et à la signature optique de l’échantillon sondé dans une seule expérience. Les spectres de photoluminescence acquis par le spécimen au cours de son évaporation en cours représentent une source unique d’informations pour la compréhension du mécanisme de l’interaction lumière-matière et la physique de la photoémission sous champ électrique élevé. La corrélation des informations structurelles et optiques, liées à cette hétérostructure MQW, démontre que la technique couplée in situ peut chevaucher la limite de diffraction du laser PL et que, comme pour les nano-aiguilles de diamant, il est possible d’estimer le stress de traction induit. Les résultats obtenus par couplage in situ de la technique La-APT avec la spectroscopie PL montrent qu’un tel instrument est une technique innovante et puissante pour effectuer des recherches à l’échelle nanométrique. Pour cette raison, ce travail peut ouvrir de nouvelles perspectives pour une compréhension approfondie de la physique liée aux systèmes étudiés en parallèle avec l’amélioration continue de la configuration expérimentale.
Mots clés
Laser-assisted Atom Probe Tomography
, Photoluminescence spectroscopy
In-situ technique
Optical-structural correlation
Nanomaterials
Diamond color centers
ZnO/(Mg, Zn)O multi-quantum-well heterostructure
Optical contactless piezo-spectroscopy
Tensile stress
Opto-mechanical properties
Super-resolution
Tomographie à Sonde Atomique assistée par laser
Spectroscopie de photoluminescence
Technique in-situ
Corrélation optique-structurelle
Nanomatériaux
Centres de couleur du diamant
Hétérostructure à boîtes quantiques de ZnO/(Mg, Zn)O
Piézo-spectroscopie optique sans contact
Contrainte de traction
Propriétés opto-mécaniques,
Super-résolution
Origine | Version validée par le jury (STAR) |
---|
Loading...