Sparse Signal Modeling : application to Image Compression, Image Error Concealment and Compressed Sensing - TEL - Thèses en ligne
Thèse Année : 2018

Sparse Signal Modeling : application to Image Compression, Image Error Concealment and Compressed Sensing

Modélisation parcimonieuse des signaux : application a la compression d'image, compensation d'erreurs et à l'acquisition comprimée

Résumé

Signal models are a cornerstone of contemporary signal and image processing methodology. In this report, two particular signal modeling methods, called analysis and synthesis sparse representation, are studied which have been proven to be effective for many signals, such as natural images, and successfully used in a wide range of applications. Both models represent signals in terms of linear combinations of an underlying set, called dictionary, of elementary signals known as atoms. The driving force behind both models is sparsity of the representation coefficients, i.e. the rapid decay of the representation coefficients over the dictionary. On the other hands, the dictionary choice determines the success of the entire model. According to these two signal models, there have been two main disciplines of dictionary designing; harmonic analysis approach and machine learning methodology. The former leads to designing the dictionaries with easy and fast implementation, while the latter provides a simple and expressive structure for designing adaptable and efficient dictionaries. The main goal of this thesis is to provide new applications to these signal modeling methods by addressing several problems from various perspectives. It begins with the direct application of the sparse representation, i.e. image compression. The line of research followed in this area is the synthesis-based sparse representation approach in the sense that the dictionary is not fixed and predefined, but learned from training data and adapted to data, yielding a more compact representation. A new Image codec based on adaptive sparse representation over a trained dictionary is proposed, wherein different sparsity levels are assigned to the image patches belonging to the salient regions, being more conspicuous to the human visual system. Experimental results show that the proposed method outperforms the existing image coding standards, such as JPEG and JPEG2000, which use an analytic dictionary, as well as the state-of-the-art codecs based on the trained dictionaries. In the next part of thesis, it focuses on another important application of the sparse signal modeling, i.e. solving inverse problems, especially for error concealment (EC), wherein a corrupted image is reconstructed from the incomplete data, and Compressed Sensing recover, where an image is reconstructed from a limited number of random measurements. Signal modeling is usually used as a prior knowledge about the signal to solve these NP-hard problems. In this thesis, inspired by the analysis and synthesis sparse models, these challenges are transferred into two distinct sparse recovery frameworks and several recovery methods are proposed. Compared with the state-of-the-art EC and CS algorithms, experimental results show that the proposed methods show better reconstruction performance in terms of objective and subjective evaluations. This thesis is finalized by giving some conclusions and introducing some lines for future works.
La modélisation des signaux peut être vue comme la pierre angulaire de la méthodologie contemporaine de traitement du signal et de l'image. La modélisation parcimonieuse permets la représentation des signaux en termes de combinaisons linéaires d'un ensemble sous-jacent, appelé dictionnaire, de signaux élémentaires connus sous le nom d'atomes. La force motrice de ce modèle est la rareté des coefficients de représentation, c'est-à-dire la décroissance rapide des coefficients de représentation sur le dictionnaire. L'objectif principal de cette thèse est de fournir de nouvelles applications pour cette méthode de modélisation du signal en abordant plusieurs problèmes sous différents angles. On se concentre sur une autre application importante de la modélisation parcimonieuse des signaux, à savoir la résolution des problèmes inverses, notamment la compensation des erreurs, la reconstruction des images incomplètes et la reconstruction des images compresses à partir d'un nombre limité de mesures aléatoires. La modélisation du signal est généralement utilisée comme une connaissance préalable du signal pour résoudre ces problèmes NP-difficiles. Puis, Il commence par l'application directe de la représentation éparse, c'est-à-dire a la compression d'image. Un nouveau codec image basé sur la représentation éparse adaptative sur un dictionnaire formé est proposé, dans lesquels différents niveaux de densité sont assignés aux correctifs d'image appartenant aux régions saillantes. Dans cette thèse, ces défis sont transférés dans des cadres distincts d’acquisition comprimée et plusieurs méthodes de reconstruction sont proposées.
Fichier principal
Vignette du fichier
these_akbari_ali_2018.pdf (8.38 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02924976 , version 1 (28-08-2020)

Identifiants

  • HAL Id : tel-02924976 , version 1

Citer

Ali Akbari. Sparse Signal Modeling : application to Image Compression, Image Error Concealment and Compressed Sensing. Signal and Image processing. Sorbonne Université, 2018. English. ⟨NNT : 2018SORUS461⟩. ⟨tel-02924976⟩
162 Consultations
163 Téléchargements

Partager

More