Etude comparée de l'émission d'électrons de nanopointes de tungstène et de diamant : émission de champ et photoémission induite par laser femtoseconde - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Compared study of electron emission from tungsten and diamond nanotips : Field emission and ultrafast laser-induced photoemission

Etude comparée de l'émission d'électrons de nanopointes de tungstène et de diamant : émission de champ et photoémission induite par laser femtoseconde

Résumé

This thesis presents electron emission from metallic (tungsten) and dielectric (diamond) nanotips under femtosecond laser illumination. The behavior of DC emission and laser induced photoemission from tungsten nanotips has been widely studied and we use it to benchmark diamond measurements. In the first part, we study DC emission and photoemission from tungsten nanotips. Numerical simulations made from a finite element model (using COMSOL) of our experimental setup, allow the computation of static and optical field enhancement coefficients linked to the tip geometry. Results are compared with the spatial profile of electron emission, which links the field enhancement area at the tip apex and the electron detection area. In the second part, we study DC emission and photoemission from diamond nanotips. Electron energy measurements highlight the presence of a voltage drop along the diamond tip, due to the low conductivity of this material. Electron emission current inside the tip and at the apex obeys Poole-Frenkel conduction, coupled with Fowler-Nordheim field emission observed commonly for metallic surfaces. We propose a macroscopic model to combine conduction and emission mechanisms for DC emission. Under laser illumination, emission measurements are very different from the metallic case. Electron emission saturates under intense laser illumination. In this regime, we show that the DC current cannot reach its DC value between pulses. By lowering laser repetition rate, we are able to measure the dynamics of the DC current in between laser pulses. We adapt the DC macroscopic model for laser induced photoemission using an effective capacitance, and we show very good quantitative agreement with experimental measurement obtained on diamond nanotips. The last part is an introduction to electron time-of-flight measurements to measure the temporal statistics of electron arrival times. We present the modifications made on the experimental setup to be able to make these kinds of measurements, as well as preliminary results obtained on DC and laser-induced emission from tungsten nanotip.
Cette thèse s'intéresse à l'émission d'électrons à partir de nanopointes métalliques et diélectriques sous illumination laser femtoseconde. Les différents types d'émission sont étudiés dans les cas spécifiques de nanopointes de tungstène et de diamant. Les nombreuses études précédentes sur le tungstène, permettent une comparaison des phénomènes d'émission bien connus, à ceux, nouveaux, observés dans le cas du diamant. Dans la première partie de l'étude, nous reprenons les résultats expérimentaux de l'émission statique et de la photoémission à partir de nanopointes de tungstène. Des simulations numériques, faites à partir d'un modèle à éléments finis (utilisant le logiciel commercial) COMSOL du dispositif expérimental, permettent un calcul des coefficients d'amplification statique et optique du champ électrique, due à la forme particulière de ces pointes. Les résultats sont alors comparés à des cartographies spatiales de l'émission, ce qui permet de conclure sur la relation directe entre la zone d'amplification du champ à l'apex de la pointe et la zone d'arrivée des électrons sur le détecteur. Dans la deuxième partie de l'étude, nous reprenons les études expérimentales faites sur le tungstène pour le cas du diamant. Les premières mesures de l'énergie des électrons mettent en évidence la présence d'une chute de tension le long de la pointe de diamant, venant de sa faible conductivité. Le courant de conduction des électrons dans la pointe est alors modélisé par un mécanisme Poole-Frenkel dépendant directement de cette chute de tension. Nous modélisons l'émission statique de ces pointes par un circuit électrique simple composé de deux résistances en série. Dans le régime de photoémission, induit par un laser femtoseconde, les résultats sont très différents du cas du tungstène. Les impulsions laser induisent l'émission d'électrons jusqu'à un courant de saturation tel que l'émission statique entre les impulsions disparait. Nous avons mesuré le temps nécessaire (de l'ordre de la microseconde) permettant à l'émission statique de réapparaitre entre les impulsions laser. Ces mesures sont interprétées par un effet capacitif de déplétion des charges disponibles pour la photoémission. En complétant le modèle électrique précédant avec l'ajout d'un condensateur, il est possible de modéliser quantitativement l'ensemble des résultats obtenus pour l'émission statique et la photoémission de nanopointe de diamant. La dernière partie de l'étude propose une introduction à la mesure du temps de vol et des statistiques temporelles des électrons émis. Nous présentons les changements opérés sur le dispositif expérimental afin de permettre de telles mesures ainsi que les résultats préliminaires obtenus sur une nanopointe de tungstène sous illumination laser.
Fichier principal
Vignette du fichier
2019TOU30253a.pdf (6.27 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02965957 , version 1 (13-10-2020)

Identifiants

  • HAL Id : tel-02965957 , version 1

Citer

Olivier Torresin. Etude comparée de l'émission d'électrons de nanopointes de tungstène et de diamant : émission de champ et photoémission induite par laser femtoseconde. Physique [physics]. Université Paul Sabatier - Toulouse III, 2019. Français. ⟨NNT : 2019TOU30253⟩. ⟨tel-02965957⟩
143 Consultations
139 Téléchargements

Partager

Gmail Facebook X LinkedIn More