The switching paths of spin transfer torque magnetic random access memories - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

The switching paths of spin transfer torque magnetic random access memories

Les chemins de retournement dans les mémoires magnétiques à transfert de spin

Paul Bouquin

Résumé

In spin transfer torque random access memories (STTMRAM), the magnetization of a thin ferromagnetic layer is reversed under the action of a polarized spin current. Along this manuscript we study the switching path that the STTMRAM undergo. First I present the basic theoretical concepts necessary for our forthcoming calculations. Then comes a state of the art of the switching path. The first results I present are micromagnetic simulations of the switching. We study the impact of the diameter of the device on the switching path. From these numerical calculations we predict for devices between 20 and 100 nm at room temperature a switching path composed of a coherent phased followed by a domain wall nucleation and motion. It is the switching path expected in our forthcoming measurements. The domain wall dynamics observed in the micromagnetic simulations present complex Walker oscillations that are not understood from the domain wall models of the state of the art. Therefore, I present a more complete model for the domain wall dynamics within a STTMRAM which takes into account the exact geometry of the system. In this geometry the elasticity terms act as a new effective field called the stretch field. The stretch field plays a key role in the wall dynamics and explains the complex Walker oscillations. The conditions under which these effects can be measured are also predicted by our new model. Our measurements are performed on state-of-the-art STTMRAM based on perpendicular magnetic tunnel junction. The diameter of the devices varies between 26 and 200 nm. We characterize our devices by magnetometry, ferromagnetic resonance and electrical time-resolved measurements of the switching path. The switching path in our time-resolved measurements presents the signatures of an initial coherent phase and of a domain wall motion. This is in agreement with the simulated switching path. The complex Walker oscillations predicted by our models are measured in specific devices with an ultrasoft free layer, but not in our most standard stack. This highlight the interest of our analytical models for understanding the behavior of application-oriented devices.
Dans les mémoires magnétiques à transfert de spin, l’aimantation d’une couche mince ferromagnétique est retournée sous l’effet d’un courant polarisé. Au cours de ce manuscrit est étudiée la façon dont ce retournement s’opère, appelée chemin de retournement. Après avoir posé les concepts théoriques de base nécessaires et effectué un état de l’art du chemin de retournement, je présente les résultats de nos simulations micromagnétiques. Nous avons étudié le chemin de retournement en fonction du diamètre du dispositif. Ces calculs numériques prédisent un retournement composé d’une phase cohérente suivie de la nucléation et de la propagation d’une paroi de domaine. Ce chemin de retournement est attendu pour les dispositifs the 20 à 100 nm à température ambiante, donc dans nos mesures à venir. La propagation de paroi de domaine observée dans les simulations présente de complexes oscillations de Walker qui ne sont pas expliquées par les modèles de l’état de l’art. Aussi je présente un modèle de dynamique de paroi plus complet, où la géométrie exacte du système est prise en compte. Dans cette géométrie l’élasticité de la paroi donne naissance à un nouveau champ que nous appelons champ d’étirement. Ce champ d’étirement joue un rôle capital dans la dynamique de paroi et va nous permettre de comprendre et de prédire les oscillations de Walker complexes. Nos mesures sont effectuées pour des dispositifs de mémoires magnétiques à transfert de spin dernière génération, basé sur une jonction tunnel magnétique à anisotropie perpendiculaire. Le diamètre de nos dispositifs varie entre 26 et 200 nm. Nous effectuons des mesures de magnétométrie, de résonance ferromagnétique et des mesures électriques résolues en temps de la commutation. Le chemin de retournement mesuré dans ces dernières présente les signatures d’une phase initiale cohérente suivie d’un déplacement de paroi de domaine, comme calculé dans nos simulations. Les fortes oscillations de Walker prédites par nos modèles sont observées pour des échantillons spécifiques où la couche libre présente peu de défauts, mais pas dans nos échantillons les plus standards. Ceci met en lumière l’intérêt de nos travaux analytiques dans la compréhension du retournement dans des dispositifs destinés aux applications industrielles.
Fichier principal
Vignette du fichier
87313_BOUQUIN_2020_archivage.pdf (8.57 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03026404 , version 1 (26-11-2020)

Identifiants

  • HAL Id : tel-03026404 , version 1

Citer

Paul Bouquin. The switching paths of spin transfer torque magnetic random access memories. Condensed Matter [cond-mat]. Université Paris-Saclay, 2020. English. ⟨NNT : 2020UPAST009⟩. ⟨tel-03026404⟩
250 Consultations
249 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More