Resistive memories and 3D monolithic technologies for reconfigurable spiking neuromorphic processors
Mémoires résistives et technologies 3D monolithiques pour processeurs neuromorphiques impulsionnels et reconfigurables
Résumé
The human brain is a complex, energy-efficient computational system that excels at cognitive tasks thanks to its natural capability to perform inference. By contrast, conventional computing systems based on the classic Von Neumann architecture require large power budget to execute such assignments. Herein comes the idea to build brain-inspired electronic computing systems, the so-called neuromorphic approach. In this thesis, we explore the use of novel technologies, namely Resistive Memories (RRAMs) and three-dimensional (3D) monolithic technologies, to enable the hardware implementation of compact, low-power reconfigurable Spiking Neural Network (SNN) processors. We first provide a comprehensive study of the impact of RRAM electrical properties on SNNs with RRAM synapses and trained with unsupervised learning (Spike-Timing-Dependent Plasticity (STDP)). In particular, we clarify the role of synaptic variability originating from RRAM resistance variability. Second, we investigate the use of RRAM-based Ternary Content-Addressable Memory (TCAM) arrays as synaptic routing tables in SNN processors to enable on-the-fly reconfigurability of network topology. For this purpose, we present in-depth electrical characterisations of two RRAM-based TCAM circuits: (i) the most common two-transistors/two-RRAMs (2T2R) RRAM-based TCAM, and (ii) a novel one-transistor/two-RRAMs/one-transistor (1T2R1T) RRAM-based TCAM, both featuring the smallest silicon area up-to-date. We compare both structures in terms of performance, reliability, and endurance. Finally, we explore the potential of 3D monolithic technologies to improve area-efficiency. In addition to the conventional monolithic integration of RRAMs in the back-end-of-line of CMOS technology, we examine the vertical stacking of CMOS over CMOS transistors. To this end, we demonstrate the full 3D monolithic integration of two tiers of CMOS transistors with one tier of RRAM devices, and present electrical characterisations performed on the fabricated devices.
Le cerveau humain est un système computationnel complexe mais énergétiquement efficace qui excelle aux applications cognitives grâce à sa capacité naturelle à faire de l'inférence. À l'inverse, les systèmes de calculs traditionnels reposant sur la classique architecture de Von Neumann exigent des consommations de puissance importantes pour exécuter de telles tâches. Ces considérations ont donné naissance à la fameuse approche neuromorphique, qui consiste à construire des systèmes de calculs inspirés du cerveau. Dans cette thèse, nous examinons l'utilisation de technologies novatrices, à savoir les mémoires résistives (RRAMs) et les technologies tridimensionnelles (3D) monolithiques, pour permettre l'implémentation matérielle compacte de processeurs neuromorphiques impulssionnels (SNNs) et reconfigurables à faible puissance. Dans un premier temps, nous fournirons une étude détaillée sur l'impact des propriétés électriques des RRAMs dans les SNNs utilisant des synapses à base de RRAMs, et entraînés avec des méthodes d'apprentissage non-supervisées (plasticité fonction du temps d'occurence des impulsions, STDP). Notamment, nous clarifierons le rôle de la variabilité synaptique provenant de la variabilité résistive des RRAMs. Dans un second temps, nous étudierons l'utilisation de matrices de mémoires ternaires adressables par contenu (TCAMs) à base de RRAMs en tant que tables de routage synaptique dans les processeurs SNNs, afin de permettre la reconfigurabilité de la topologie du réseau. Pour ce faire, nous présenterons des caractérisations électriques approfondies de deux circuits TCAMs à base de RRAMs: (i) la structure TCAM la plus courante avec deux-transistors/deux-RRAMs (2T2R), et (ii) une nouvelle structure TCAM avec un-transistor/deux-RRAMs/un-transistor (1T2R1T), toutes deux dotées de la plus petite surface silicium à l'heure actuelle. Nous comparerons les deux structures en termes de performances, fiabilité et endurance. Pour finir, nous explorerons le potentiel des technologies 3D monolithiques en vue d'améliorer l'efficacité en surface. En plus de la classique intégration monolithique des RRAMs dans le retour en fin de ligne (back-end-of-line) des technologies CMOS, nous analyserons l'empilement vertical de transistors CMOS les uns au-dessus des autres. Pour cela, nous démontrerons la possibilité d'intégrer monolithiquement deux niveaux de transistors CMOS avec un niveau de dispositifs RRAMs. Cette preuve de concept sera appuyée par des caractérisations électriques effectuées sur les dispositifs fabriqués.
Origine | Version validée par le jury (STAR) |
---|