Une approche neuronale pour l’analyse d’opinions en arabe - TEL - Thèses en ligne
Thèse Année : 2020

Neural approach for Arabic sentiment analysis

Une approche neuronale pour l’analyse d’opinions en arabe

Résumé

My thesis is part of Arabic sentiment analysis. Its aim is to determine the global polarity of a given textual statement written in MSA or dialectal arabic. This research area has been subject of numerous studies dealing with Indo-European languages, in particular English. One of difficulties confronting this thesis is the processing of Arabic. In fact, Arabic is a morphologically rich language which implies a greater sparsity : we want to overcome this problem by producing, in a completely automatic way, new arabic specific embeddings. Our study focuses on the use of a neural approach to improve polarity detection, using embeddings. These embeddings have revealed fundamental in various natural languages processing tasks (NLP). Our contribution in this thesis concerns several axis. First, we begin with a preliminary study of the various existing pre-trained word embeddings resources in arabic. These embeddings consider words as space separated units in order to capture semantic and syntactic similarities in the embedding space. Second, we focus on the specifity of Arabic language. We propose arabic specific embeddings that take into account agglutination and morphological richness of Arabic. These specific embeddings have been used, alone and in combined way, as input to neural networks providing an improvement in terms of classification performance. Finally, we evaluate embeddings with intrinsic and extrinsic methods specific to sentiment analysis task. For intrinsic embeddings evaluation, we propose a new protocol introducing the notion of sentiment stability in the embeddings space. We propose also a qualitaive extrinsic analysis of our embeddings by using visualisation methods.
Cette thèse s’inscrit dans le cadre de l’analyse d’opinions en arabe. Son objectif consiste à déterminer la polarité globale d’un énoncé textuel donné écrit en Arabe standard moderne (ASM) ou dialectes arabes. Cette thématique est un domaine de recherche en plein essor et a fait l’objet de nombreuses études avec une majorité de travaux actuels traitant des langues indo-européennes, en particulier la langue anglaise. Une des difficultés à laquelle se confronte cette thèse est le traitement de la langue arabe qui est une langue morphologiquement riche avec une grande variabilité des formes de surface observables dans les données d’apprentissage. Nous souhaitons pallier ce problème en produisant, de manière totalement automatique et contrôlée, de nouvelles représentations vectorielles continues (en anglais embeddings) spécifiques à la langue arabe. Notre étude se concentre sur l’utilisation d’une approche neuronale pour améliorer la détection de polarité, en exploitant la puissance des embeddings. En effet, ceux-ci se sont révélés un atout fondamental dans différentes tâches de traitement automatique des langues naturelles (TALN). Notre contribution dans le cadre de cette thèse porte plusieurs axes. Nous commençons, d’abord, par une étude préliminaire des différentes ressources d’embeddings de mots pré-entraînés existants en langue arabe. Ces embeddings considèrent les mots comme étant des unités séparées par des espaces afin de capturer, dans l'espace de projection, des similarités sémantiques et syntaxiques. Ensuite, nous nous focalisons sur les spécificités de la langue arabe en proposant des embeddings spécifiques pour cette langue. Les phénomènes comme l’agglutination et la richesse morphologique de l’arabe sont alors pris en compte. Ces embeddings spécifiques ont été utilisés, seuls et combinés, comme entrée à deux réseaux neuronaux (l’un convolutif et l’autre récurrent) apportant une amélioration des performances dans la détection de polarité sur un corpus de revues. Nous proposons une analyse poussée des embeddings proposées. Dans une évaluation intrinsèque, nous proposons un nouveau protocole introduisant la notion de la stabilité de polarités (sentiment stability) dans l’espace d'embeddings. Puis, nous proposons une analyse qualitative extrinsèque de nos embeddings en utilisant des méthodes de projection et de visualisation.
Fichier principal
Vignette du fichier
2020LEMA1022.pdf (2.81 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03084468 , version 1 (21-12-2020)

Identifiants

  • HAL Id : tel-03084468 , version 1

Citer

Amira Barhoumi. Une approche neuronale pour l’analyse d’opinions en arabe. Informatique et langage [cs.CL]. Le Mans Université; Université de Sfax (Tunisie), 2020. Français. ⟨NNT : 2020LEMA1022⟩. ⟨tel-03084468⟩
624 Consultations
709 Téléchargements

Partager

More