Space-time isogemetric methods for multi-field problems in mechanics - TEL - Thèses en ligne
Thèse Année : 2020

Space-time isogemetric methods for multi-field problems in mechanics

Méthodes isogéométriques espace-temps pour des équations multi-champs en mécanique

Résumé

In this work, we introduce different weak formulations based on time continuous Galerkin methods for several types of problems, governed by partial differential equations in space and time. Our approach is based on a simultaneous and arbitrary discretization of the space and time. The Isogeometric Analysis (IGA) is employed instead of the classical Finite Element Method (FEM) in order to take advantage of the continuity properties of B-splines and NURBS functions. A detailed state of the art is narrated first to introduce the concept of both of these methods and to show the work already done in literature regarding the space-time methods on a first basis, and the IGA on a second basis. Then, the methods are applied to different types of mechanical problems. These problems are mainly engineering problems such as elastodynamics, thermomechanics, and history dependant behaviors (viscoelasticity). We compare different types of variational formulations and different discretizations. We show that in the case of problems having discontinuous solutions such as impact problems, the use of both a formulation with derived in time test functions and additional least square terms makes it possible to avoid the spurious numerical oscillations often observed for these type of problems. Furthermore, we introduce a new stabilization technique that can be used easily for non-linear problems. It is based on the consistency condition of the acceleration, so we call it Galerkin with Acceleration Consistency (GAC). The problems investigated take both linear and non-linear forms. We solve elastodynamics, thermomechanics and viscoelatic type problems at small and finite strains. Both compressible and incompressible materials are considered. The convergence of the method is numerically studied and compared with existing methods. We verify, where applicable, the conservation properties of the formulation and compare them to the conservation properties of the classical methods such as the FEM equipped with an HHT scheme for the time discretization. The numerical results show that space-time methods are more energy conserving than classical methods for the elastodynamic problems. Different convergence tests are leaded and optimal convergence rates are obtained, showing the efficiency of the method. We show furthermore that heterogeneous and asynchroneous schemes can be built in a very simple manner, opening up many possibilities while dealing with space-time methods. Finally, the performances observed on different problems and the versatility of the approach suggest that ST IGA methods have a strong potential for advanced simulations in engineering.
Dans ce travail, nous introduisons différentes formulations faibles basées sur des méthodes de Galerkin continues en temps pour plusieurs types de problèmes, pilotés par des équations aux dérivées partielles dans l’espace et le temps. Notre approche repose sur une discrétisation simultanée et arbitraire de l’espace et du temps. L’analyse isogéométrique (IGA) est utilisée comme outil de discrétisation à la place de la méthode classique des éléments finis (FEM) afin de bénéficier des propriétés de continuité des fonctions B-splines et NURBS. Un état de l’art détaillé est présenté pour introduire le concept de ces deux méthodes et pour montrer les travaux déjà réalisés dans la littérature concernant les méthodes espace-temps d’une part, et l’IGA d’une autre part. Les méthodes seront combinées et appliquées à différents types de problèmes mécaniques. Ces problèmes sont principalement des problèmes d’ingénierie tels que l’élastodynamique, la thermomécanique et les problèmes viscoélastiques. On compare différents types de formulations variationelles et différentes configurations de discrétisation. On montre que dans le cas de problèmes ayant des solutions discontinues en temps comme les problèmes d’impact, l’utilisation conjointe d’une formulation avec des fonctions test dérivées en temps et des termes de stabilisation de type moindres carrés permettent de contrôler les oscillations numériques souvent observées pour ce type de problèmes. De plus, nous introduisons une nouvelle technique de stabilisation qui peut être utilisée facilement pour des problèmes non linéaires. Celle-ci est basée sur la condition de consistence de l’accélération, nous l’appelons donc Galerkin avec consistence sur l’accélération. Les problèmes étudiés prennent donc à la fois des formes linéaires et non linéaires. Nous résolvons des problèmes en petites et en grandes déformations : que ce soit pour l’élastodynamique, la thermomécanique ou pour les problèmes de type viscoélastique. Des matériaux compressibles et incompressibles sont considérés. La convergence de la méthode est étudiée numériquement et comparée aux méthodes existantes. Nous vérifions autant que possible les propriétés de conservation de la formulation et les comparons aux propriétés de conservation des méthodes classiques telles que la FEM équipée d’un schéma HHT en temps. Les résultats numériques montrent que les méthodes espace-temps sont plus conservatives en énergie que les méthodes classiques pour les problèmes d’élastodynamique. Différents tests de convergence sont menés et des taux de convergence optimaux sont obtenus à chaque fois, montrant l’efficacité de la méthode. Nous montrons en outre que des schémas hétérogènes et asynchrones peuvent être construits d’une manière très simple, ouvrant à de nombreuses possibilités avec les méthodes espace-temps. Enfin, les performances observées sur différents problèmes et la polyvalence de l’approche suggèrent que les méthodes IGA espace-temps ont un fort potentiel dans le domaine de la simulation numérique en ingénierie.
Fichier principal
Vignette du fichier
theseSaadeC.pdf (6.59 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03187060 , version 1 (31-03-2021)

Identifiants

  • HAL Id : tel-03187060 , version 1

Citer

Christelle Saade. Space-time isogemetric methods for multi-field problems in mechanics. Solid mechanics [physics.class-ph]. Ecole Centrale Marseille, 2020. English. ⟨NNT : 2020ECDM0011⟩. ⟨tel-03187060⟩
186 Consultations
131 Téléchargements

Partager

More