Towards less toxic quantum dots, a safer by design approach
Vers des quantum dots moins toxiques, une approche "safer by design"
Résumé
Quantum dots (QDs) are fluorescent semiconductor nanocrystals with exceptional optical properties, which make them particularly attractive in optoelectronic fields and for biomedical applications. However, during their life cycle, the aging of QDs can lead to the degradation of these compounds, inducing the release of toxic elements. Even if toxicity studies on indium-based QDs are still limited, they show a lower intrinsic toxicity in comparison to the heavy metal containing Cd-based QDs. In this context, our laboratory synthetizes different InP QDs with different shell designs, following a safer by design approach, with the aim of producing less toxic QDs with better optical properties. These QDs are composed of a InZnP/Zn(Se,S) core/shell structure which is covered or not by a thick or a thin additional ZnS layer. In this study, primary human keratinocytes which come from breast surgeries, were exposed to these QDs, either pristine or after simulating environmental weathering. First, the physico-chemical transformations of QDs during aging are characterized. Significant photophysical and structural modifications are highlighted and transformation products are identified. However, the results show that these physico-chemical transformations are slowed down by the presence of a double shell, especially when it is thick. Then, the evaluation of QDs toxicity are performed and new assays are developed via high content screening (HCS) on an automated microscope. While pristine QDs were relatively stable and not very toxic to cells, it was not true for their degradation products. Exposure of cells to aged QDs demonstrated high toxicity at low concentrations and modifyed the expression of some genes and proteins essential for cellular homeostasis. These results show that new generations of QDs are safer. However, it’s important to keep improving their photostability since their dissolution and the release of toxic elements at the end of their life are still inevitable.
Les quantum dots (QD) sont des nanocristaux semi-conducteurs fluorescents aux propriétés optiques exceptionnelles, ce qui les rend particulièrement attractifs dans les domaines de l’optoélectronique et pour les applications biomédicales. Cependant, au cours de leur cycle de vie, le vieillissement des QDs peut conduire à la dégradation de ces composés, induisant la libération d'éléments toxiques. Même si les études de toxicité sur les QDs à base d'indium sont peu nombreuses, certaines révèlent une toxicité intrinsèque plus faible que les QDs contenant des métaux lourds comme le Cd. Dans ce contexte, notre laboratoire synthétise différents QDs d’InP recouverts de coquilles, conçus par une approche « safer by design », dans le but de produire des QDs moins toxiques avec de meilleures propriétés optiques. Ces QDs sont constitués d'une structure cœur/coquille de InZnP/Zn (Se,S) qui est recouverte, ou non, d'une couche additionnelle de ZnS, épaisse ou mince. Dans cette étude, des kératinocytes primaires humains, issus de chirurgies mammaires, sont exposés aux QDs, après synthèse ou après vieillissement environnemental simulé. Dans un premier temps, les transformations physico-chimiques des QDs au cours du vieillissement sont caractérisées et mettent en évidence d’importantes modifications photophysiques et structurales ainsi que la formation de produits de transformation. Néanmoins, les résultats montrent que les transformations physico-chimiques des QDs sont ralenties par la présence de la double coquille, notamment lorsqu’elle est épaisse. Dans un second temps, l’évaluation de la toxicité des QDs est effectuée et de nouveaux tests sont dévelopés en criblage à haut contenu (HCS) sur un microscope automatisé. Alors que les QDs non vieillis se sont révélés relativement stables et peu toxiques pour les cellules, il n’en fût pas de même pour leurs produits de dégradation. L’exposition des cellules aux QDs vieillis a mis en évidence une forte toxicité à faibles concentrations, modifiant l’expression de certains gènes et protéines essentiels à l’homéostasie cellulaire. Ces résultats montrent que les nouvelles générations de QDs sont plus sûres. Cependant, il est important de continuer à améliorer leur photostabilité puisque leur dissolution et le relargage d’éléments toxiques en fin de vie sont inévitables pour le moment.
Origine | Version validée par le jury (STAR) |
---|