Adsorption of alkali cations and electrokinetic phenomena on charged silica surfaces
Adsorption des cations alcalins et phénomènes électrocinétiques sur les surfaces de silices chargées
Abstract
In confined structures, such as mesoporous silica, the mobility of the cations and the surface/cations interactions are key phenomena. They drive adsorption properties, which control numerous applications, especially for extraction and separation. This modelling work describes equilibrium and transport interface properties that control ion exchange and ionic adsorption. The physical and chemical properties of adsorption processes of alkali cations at the surface of charged silica is studied thanks to a multiscale approach based on a molecular description. The systematic study of alkali serie (Li+, Na+, K+ and Cs+) has been studied to that goal. The theoretical framework is Mc Millan-Mayer theory. The latter, which is known to be of fundamental significance for bulk solutions is found to be also relevant for confined media. The mean force potential of Mc Millan-Mayer between ions and surface sites has been calculated by Umbrella Sampling associated to the WHAM algorithm. The most important phenomenon we identified corresponds to the existence of Contact Ion Pairs (CIP) between the surface oxygen and the cations, without separating solvent molecules. The CIP correspond to the first minima in the potential curves if the associated energy is more than the thermal agitation (kT). For small ions (lithium) this surface complex is especially stable, adsorption constant and residence time being particularly high so that the direct molecular simulations are very difficult. A selectivity inversion has been observed between silanolates and siloxanes. Adsorption is different for kosmotropic ions (as Li+) which has to be dehydrated to be adsorbed and chaotropic ions (as Cs+) for which the solvent bound is weaker. Adsorption constants for sites of the same nature are not equal. The study of the electrokinetic phenomena (electro-osmosis and surface conductivity) has also been performed by comparing the classical descriptions (Poisson-Boltzmann, Smoluchowski, and Bikerman models) to molecular simulations. The traditional picture of the interface with several layers (inner and outer Helmholtz, Stern and Gouy-Chapman layers, shear plane) is found to be replaced by a simpler but more efficient model. For the ions, two domains are obtained: (i) CIPs, firmly bound to the surface that transmit the electrical force to the solid (and not the fluid) (ii) other ions that are globally free that transmit the electric force to the fluid. No space dependent viscosity or dielectric constant have been obtained. On the other hand, a decrease of ion mobility in the vicinity of the surface has been observed. This phenomenon can be quantitatively understood as a hydrodynamic effect that comes from the solid surface, which hinders the backflow of the solvent. This work allows a better characterization of charged glass-solution interfaces for separation science. It shows how molecular simulations can not only predict the parameters of macroscopic models (adsorption constant, transport coefficients), but also modify the latters in order to make them in agreement with molecular descriptions. Such a strategy can be extended to more complex systems, such as models of grafted surfaces.
Dans les structures confinées, comme les silices mésoporeuses, la mobilité et l'interaction des cations avec les surfaces sont des phénomènes clés. Ils guident les propriétés d'adsorption dont découlent de nombreuses applications, en particulier pour l’extraction et la séparation. Ce travail de thèse en modélisation propose de s'intéresser aux propriétés d'interface, d'équilibre et de transport qui pilotent l'échange ou l'adsorption ionique. Il s’agit de décrire la physico-chimie du processus d’adsorption de cations alcalins à la surface de silices chargée par une approche multiéchelle ayant une base moléculaire. Pour cela une étude de la série des alcalins (Li+, Na+, K+ et Cs+) a été menée. Le cadre théorique est la théorie de Mc Millan Mayer. Celle-ci, fondamentale pour les solutions libres s’est révélée également être une méthode de choix pour les milieux confinés. Le potentiel de force moyenne de McMillan Mayer entre les ions et des sites de surface a pu être calculé par la méthode d'Umbrella Sampling associé à l’algorithme WHAM. Le phénomène qui s’est révélé le plus pertinent correspond à la présence de paires au contact (Contact Ion Pairs - CIP) entre les oxygènes de la surface et les cations, sans molécule d’eau qui les sépare. Ces CIP se traduisent dans les courbes de potentiel par un premier minimum d’intensité supérieure à l’agitation thermique. Pour les petits ions (lithium), ce complexe de surface est particulièrement stable, les constantes d’adsorption et les temps de résidence étant particulièrement élevés, ce qui rend délicat la simulation moléculaire directe de ces phénomènes. Il a été observé une inversion de sélectivité entre les sites silanolates et siloxanes. L'adsorption est différente pour un ion cosmotrope comme Li+ qui doit se déshydrater pour s'adsorber et un ion chaotrope comme Cs+ qui est moins lié au solvant. Les constantes d’adsorption de chaque site de même type ne sont pas toutes égales. L’étude des phénomènes électrocinétiques (électro-osmose et conductivité de surface) a également été menée en comparant les descriptions classiques (modèles de Poisson-Boltzmann, de Smoluchowski, et de Bikerman) aux résultats de dynamique moléculaire. Il est apparu que l'image traditionnelle en plusieurs couches des interfaces (couches de Helmholtz internes et externes, de Stern, de Gouy-Chapman, plan de cisaillement) devait être remplacée par un modèle beaucoup plus simple mais plus efficace. Du point de vue des ions, deux domaines apparaissent : les CIP, globalement fixés à la surface transmettant la force électrique au solide et pas au fluide, et les autres ions, globalement libres, transmettant la force électrique au fluide. Aucune viscosité ou constante diélectrique dépendant de la distance n’a été mise en évidence. Une diminution de la mobilité des ions à proximité de la surface a en revanche été observée. Ce phénomène peut être quantitativement compris comme un effet hydrodynamique du à la présence des surfaces qui gênent le flux en retour du solvant. Ce travail permet ainsi de mieux caractériser l'interface verre chargé-solution pour les applications en science de la séparation. Il a pu montrer comment les simulations moléculaires pouvaient non seulement prédire les paramètres des modèles macroscopiques (constantes d’adsorption, coefficients de transport, etc.) mais surtout modifier ceux-ci pour les rendre en accord avec la description moléculaire. Une telle stratégie pourra par la suite être mise en œuvre sur des systèmes plus complexes, comme des modèles de surfaces greffées.
Origin | Files produced by the author(s) |
---|