Proportional-fair scheduling of mobile users based on a partial view of future channel conditions - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Proportional-fair scheduling of mobile users based on a partial view of future channel conditions

Ordonnancement garantissant l'équité proportionnelle des utilisateurs mobiles basé sur une connaissance partielle des conditions futures des canaux

Résumé

In communication networks, a scheduler decides which network resources are allocated to which user. Due to limited available resources and heterogeneous user requirements, the choice of the scheduler plays an important role in network design. The increasing use of mobile devices, and in particular connected vehicles, is expected to drive the demand for network resources even higher making the scheduling problem more critical and complex. The current generation of schedulers base their decisions mainly on the past and the current channel state information but do not take into account the future channel state information. This leads to a sub-optimal allocation of resources which can then have a significant and adverse impact on network performance during periods of saturation. In this thesis, we propose a set of scheduling algorithms based on future channel state information with the objective of improving the total network utility. The first set of algor! ithms are designed as an improvement to the proportional fair scheduler whose objective is to maintain the balance between getting high total throughput and guarantee everyone getting a proportionally level of service. The second set of algorithms perform joint power control and channel allocation again with the objective of maximizing the proportional fair utility. Numerical experiments conducted with simple mobility models as well as traces generated using the SUMO mobility environment show that the proposed algorithms improve the utility in both single and multi-base stations networks. One of the downside is that, at each decision instant, the proposed algorithms need to solve a high dimensional convex optimization problem that may be computationally prohibitive in some real-time scenarios. In the final part of the thesis, we explore a deep neural network based method to learn the decisions of the proposed algorithms. This method is able to generate decisions much faster! while maintaining a low approximation error.
Dans les réseaux de communication, un ordonnanceur décide quelles ressources doit être attribuée à quel utilisateur. Les ressources disponibles étant limitées et les besoins des utilisateurs étant hétérogènes, le choix de l’ordonnanceur joue un rôle important dans la conception du réseau. Avec l’augmentation de la demande en ressources réseaux, due à l’utilisation croissante d’appareils mobiles et notamment à l’émergence des véhicules connectés, ce problème d’ordonnancement devient à la fois plus critique et plus complexe. Les ordonnanceurs utilisés actuellement allouent le canal en considérant son état actuel, et éventuellement ses états passés, mais sans tenir compte de ses états futurs. Ceci conduit à une allocation sous-optimale des ressources, ce qui peux avoir un effet néfaste sur les performances du réseau dans les périodes de congestion. Dans cette thèse, nous proposons un ensemble d’algorithm! es d’ordonnancement qui exploitent l’information sur les états futurs du canal pour améliorer l’utilité totale du réseau. Le premier ensemble d’algorithmes est conçu comme une amélioration de l’ordonnanceur à équité proportionnelle dont l’objectif est de maintenir un certain équilibre entre d’une part un débit total élevé et d’autre part une certaine équité entre utilisateurs garantissant à chacun un niveau proportionnelle de service. Le deuxième ensemble d’algorithmes effectuent conjointement contrôle de puissance et allocation du canal, toujours dans le but de maximiser une fonction d’utilité basée sur le concept d’équité proportionnelle. Les expériences numériques réalisées avec des modèles simples de mobilité ainsi qu’avec des traces générées en utilisant l’environnement SUMO montrent que les algorithmes proposés améliorent l’utilité, à la fois lorsque le réseau comporte une seule station de base et lorsqu 'il en comporte plusieurs. Un des inconvénients des algorithmes proposés est qu’à chaque instant de décision il est nécessaire de résoudre un problème d’optimisation convexe de grande dimension, ce qui peut être rédhibitoire pour certains scénarios. C’est pourquoi, dans la dernière partie de la thèse, nous explorons une méthode basée sur un réseau de neurones profond pour apprendre les décisions des algorithmes proposés. Cette méthode permet de générer des décisions beaucoup plus rapidement tout en ayant une faible erreur d’approximation.
Fichier principal
Vignette du fichier
NGUYEN Thi Thuy Nga.pdf (4.44 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-03351962 , version 1 (07-01-2021)
tel-03351962 , version 2 (22-09-2021)

Identifiants

  • HAL Id : tel-03351962 , version 1

Citer

Thi Thuy Nga Nguyen. Proportional-fair scheduling of mobile users based on a partial view of future channel conditions. Networking and Internet Architecture [cs.NI]. Institut national des sciences appliquées de Toulouse, 2020. English. ⟨NNT : 2020ISAT0023⟩. ⟨tel-03351962v1⟩
179 Consultations
757 Téléchargements

Partager

Gmail Facebook X LinkedIn More