Design of multiobjective optimization algorithms and theoretical analysis of evolution strategies - TEL - Thèses en ligne
Thèse Année : 2021

Design of multiobjective optimization algorithms and theoretical analysis of evolution strategies

Conception d'algorithmes d'optimisation multiobjective et analyse théorique des stratégies d'évolution

Résumé

This work is dedicated to zero-order black-box optimization, where only a sequence of function evaluations is available for the update of the optimization algorithm. Evolutionary algorithms are commonly used to solve this type of problems. Among them, evolution strategies like CMA-ES are state-of-the-art optimization algorithms for zero-order black-box optimization problems with a continuous search space. Particular aspects of the CMA-ES are the recombination mechanism and the non-elitist selection scheme, that are crucial to deal with local irregularities and multimodality. A multiobjective CMA-ES (with recombination) is then particularly in demand for real world applications, to tackle multiobjective problems with local Pareto fronts.We design that type of multiobjective optimizers. More specifically, a new multiobjective indicator called Uncrowded Hypervolume Improvement (UHVI) is created, along with a framework of multiobjective optimizers called Sofomore. By instantiating Sofomore with CMA-ES, COMO-CMA-ES is obtained. The COMO-CMA-ES algorithm is experimented on bi-objective functions that we analyze in details in this thesis, that are the bi-objective convex quadratic problems. Interestingly, linear convergence results are empirically observed, which is the optimal linear behavior we can get since CMA-ES converges linearly on strictly convex-quadratic functions. A Python package called pycomocma and a Matlab interface are developed in this work for COMO-CMA-ES and the Sofomore framework.On a theoretical perspective, we analyze global linear convergence of evolution strategies with recombination that include well-known optimization algorithms, on a wide class of functions that are the scaling-invariant functions. Our main condition for convergence is that the expected logarithm of the step-size must increase on nontrivial linear functions. We analyze thoroughly the class of scaling-invariant functions and emphasize similar properties that they share with the positively homogeneous functions.
Ce travail concerne les algorithmes d'optimisation de type black-box, où seulement une suite des valeurs de la fonction à optimiser est disponible pour mettre à jour l'instance de l'algorithme d'optimisation. Les algorithmes évolutionnaires ont une bonne réputation pour la résolution de ce genre de problèmes, notamment le CMA-ES. Des aspects particuliers du CMA-ES sont le mécanisme de recombinaison et la sélection non-élitiste, qui sont cruciaux pour l'optimisation des fonctions irrégulières et multimodales. Un CMA-ES multiobjectif (avec recombinaison et sélection non-élitiste) est ainsi en forte demande pour les applications du monde réel, notamment pour résoudre les problèmes multiobjectifs avec des fronts de Pareto locaux.Nous concevons ce type d'algorithmes. Plus spécifiquement, un nouvel indicateur multiobjectif appelé Uncrowded Hypervolume Improvement (UHVI) est proposé, de même qu'un cadre d'algorithmes multiobjectifs appelé Sofomore. En instanciant Sofomore avec CMA-ES, nous obtenons COMO-CMA-ES. Ce nouvel algorithme multiobjectif est testé sur les fonctions bi-objectives quadratiques et convexes, que nous analysons en détail dans cette thèse. Nous observons une convergence linéaire, ce qui est le comportement optimal pour un CMA-ES multiobjectif puisque le CMA-ES converge linéairement sur les fonctions quadratiques strictemement convexes. Un package Python appelé pycomocma et une interface Matlab sont développés pour COMO-CMA-ES et pour Sofomore.D'un point de vue théorique, nous analysons la convergence linéaire de stratégies d'évolution avec recombinaison contenant des algorithmes d'optimisation très connus, sur une classe de fonctions large constituée des fonctions scaling-invariant. Notre principale condition de convergence est que l'espérance du logarithme du step-size doit croître sur les fonctions linéaires non triviales, ce qui est optimal comme condition. Nous analysons la classe de fonctions scaling-invariant et mettons l'accent sur les propriétés qu'elle partage avec les fonctions homogènes.
Fichier principal
Vignette du fichier
95885_TOURE_2021_archivage.pdf (49.14 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03482011 , version 1 (15-12-2021)

Identifiants

  • HAL Id : tel-03482011 , version 1

Citer

Cheikh Saliou Toure. Design of multiobjective optimization algorithms and theoretical analysis of evolution strategies. Optimization and Control [math.OC]. Institut Polytechnique de Paris, 2021. English. ⟨NNT : 2021IPPAX070⟩. ⟨tel-03482011⟩
197 Consultations
92 Téléchargements

Partager

More