Novel function of the ER stress transducer IRE1α in cell migration and invasion of metastatic melanoma cells - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2021

Novel function of the ER stress transducer IRE1α in cell migration and invasion of metastatic melanoma cells

Une nouvelle fonction du transducteur de stress ER IRE1 dans la migration cellulaire et l'invasion des cellules de mélanome métastatique

Résumé

Tumor cells are exposed to cell-intrinsic and extrinsic perturbations that alter the proper functioning of the endoplasmic reticulum (ER); a cellular condition known as ER stress. This condition engages an adaptive response termed as unfolded protein response (UPR). IRE1 is the most evolutionary conserved ER stress sensor of the UPR. Activation of the IRE1 RNase activity controls the expression of the transcription factor XBP1s and the degradation of mRNA through a process termed RIDD. IRE1 activity has been linked to cell migration and invasion in different types of tumors. However, no evidence regarding the role of IRE1 in melanoma cell migration/invasion has been published. Importantly in 2018 our group described a novel function of IRE1 independent of its catalytic activity, where IRE1 acted as a scaffold favoring cell migration through FLNA, an actin crosslinking protein involved in cell migration. This was demonstrated in non-tumoral cells. Therefore, in this thesis, we initially aimed to uncover the contribution of IRE1/FLNA signaling in cell migration and invasion in melanoma cells, its impact on the metastatic process. By using genetic and pharmacologic approaches, we found that deficiency of IRE1 expression or RNase activity inhibition enhances cell migration and invasion of human metastatic melanoma cell lines, indicating that the IRE1 branch could be acting as a suppressor of cell migration and invasion in metastatic melanoma cells. Notably, we were not able to corroborate the IRE1-dependent phosphorylation of FLNA. Importantly, processes that are known to be regulated by FLNA like actin cytoskeleton and cell adhesion were not affected by IRE1 depletion in human metastatic melanoma cells. These findings suggest that the regulation of cell migration/invasion by IRE1 is an FLNA-independent mechanism. Analyzing a gene expression database of melanoma tumors, we found that tumors identified with high RIDD activity presented a significant decrease in the expression of genes involved in melanoma metastasis. Our findings suggest that IRE1 through RIDD acts as a suppressor of metastatic melanoma cell migration and invasion. The results obtained in this thesis constitute the first approximation on the implication of IRE1 in metastasis-related processes in melanoma, such as cell migration and invasion.
Les cellules tumorales sont exposées à des perturbations intrinsèques et extrinsèques qui altèrent le bon fonctionnement du réticulum endoplasmique (RE); une condition cellulaire connue sous le nom de stress du RE. Cette condition engage une réponse adaptative appelée « Unfolded Protein Response » (UPR). IRE1 est le capteur du stress du RE qui est le plus conservé dans l’évolution. L'activation de l'activité RNase d’IRE1 contrôle l'expression du facteur de transcription XBP1s et la dégradation d’ARNm par un processus appelé RIDD. L'activité IRE1 a été liée à la migration et à l'invasion cellulaires dans différents types de tumeurs. Cependant, aucune preuve concernant le rôle de l'IRE1 dans la migration / l'invasion des cellules de mélanome n'a été publiée jusqu’ici. Il est important de noter qu'en 2018, notre groupe a décrit une nouvelle fonction de l'IRE1 indépendante de son activité catalytique, dans laquelle IRE1 agissait comme un échafaudage favorisant la migration cellulaire via la filamin A (FLNA), une protéine de réticulation de l'actine impliquée dans la migration cellulaire. Cela a été démontré dans des cellules non tumorales. Par conséquent, dans cette thèse, mon objectif initial était de tester et caractériser la contribution de la signalisation IRE1/FLNA dans la migration cellulaire et l'invasion dans les cellules de mélanome, son impact sur le processus métastatique. En utilisant des approches génétiques et pharmacologiques, j’ai constaté que le déficit d'expression d'IRE1 et/ou l'inhibition de son activité RNase augmentent les propriétés de migration et d'invasion des lignées cellulaires de mélanome métastatique humain, indiquant que la branche IRE1 pourrait agir comme un suppresseur de la migration et de l'invasion dans ces cellules. Notamment, nous n'avons pas été en mesure de corroborer la phosphorylation dépendante d’IRE1 de la FLNA. Surtout, les structures et processus connus pour être régulés par la FLNA comme le cytosquelette d'actine et l'adhésion cellulaire ne sont pas affectés par la déplétion de l'IRE1 dans les cellules de mélanome métastatique humain. Ces résultats suggèrent que la régulation de la migration/invasion par IRE1 est un mécanisme indépendant du FLNA. En analysant une base de données d'expression génique de tumeurs de mélanome, nous avons constaté que les tumeurs identifiées avec une activité RIDD élevée présentaient une diminution significative de l'expression des gènes impliqués dans les métastases du mélanome. Nos résultats suggèrent que IRE1 (via le RIDD) pourrait agir comme un suppresseur de la migration et de l'invasion des cellules de mélanome métastatique. Les résultats obtenus dans cette thèse constituent une première étape dans la caractérisation de l'implication d'IRE1 dans les processus liés aux métastases dans le mélanome.
Fichier principal
Vignette du fichier
LIMIA_LEON_Celia_Maria.pdf (6.12 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03585530 , version 1 (23-02-2022)

Identifiants

  • HAL Id : tel-03585530 , version 1

Citer

Celia María Limia León. Novel function of the ER stress transducer IRE1α in cell migration and invasion of metastatic melanoma cells. Human health and pathology. Université de Rennes, 2021. English. ⟨NNT : 2021REN1B015⟩. ⟨tel-03585530⟩
77 Consultations
359 Téléchargements

Partager

Gmail Facebook X LinkedIn More