Towards a better comprehension of deep learning for side-channel analysis
Vers une meilleure compréhension de l'apprentissage profond appliqué aux attaques par observations
Résumé
The recent improvements in deep learning (DL) have reshaped the state of the art of side-channel attacks (SCA) in the field of embedded security. Yet, their ``black-box'' aspect nowadays prevents the identification of the vulnerabilities exploited by such adversaries. Likewise, it is hard to conclude from the outcomes of these attacks about the security level of the target device. All those reasons have made the SCA community skeptical about the interest of such attack techniques in terms of security evaluation. This thesis proposes to draw a better understanding of deep learning for SCA. We show how the training of such estimators can be analyzed through the security evaluation prism, in order to estimate a priori the complexity of an SCA, without necessarily mounting the attack. We also remark on simulated experiments that those models, trained without prior knowledge about the counter-measures added to protect the target device, can reach the theoretical security bounds expected by the literature. This validates the relevance or not of some counter-measures such as secret-sharing or hiding, against DL-based SCA. Furthermore, we explain how to exploit a trained neural network to efficiently characterize the information leakage in the observed traces, even in presence of counter-measures making other classical charactertization techniques totally inefficient. This enables a better understanding of the leakage implicitly exploited by the neural network, and allows to refine the evaluator's diagnosis, in order to propose corrections to the developer.
Les récents progrès en apprentissage profond ont bouleversé l'état de l'art des attaques par observations en sécurité embarquée. Mais leur aspect « boîte-noire » empêche à ce jour l'identification des failles implicitement exploitées dans l'implémentation. De même, il est difficile d'interpréter les résultats de telles attaques sur le niveau de sécurité de l'implémentation-cible. Toutes ces raisons ont rendu la communauté scientifique sceptique quant à l’intérêt de ces techniques dans le cadre d'une évaluation de sécurité. Cette thèse se propose de dresser une meilleure compréhension de l'apprentissage profond dans un tel contexte. Nous montrons comment l’entraînement de tels estimateurs peut être analysé à travers le prisme d'une évaluation de sécurité, de façon à estimer a priori la complexité d’une attaque à base de réseaux de neurones sans avoir toutefois à la mener. Nous observons également sur des simulations que ces modèles entraînés sans connaissance a priori des contre-mesures peuvent atteindre les bornes de sécurité théoriques prévues par la littérature, validant la pertinence ou non de certaines contre-mesures comme le partage de secret ou la dissimulation contre les réseaux de neurones. Par ailleurs, nous expliquons comment exploiter un réseau entraîné pour effectuer une caractérisation efficace des fuites d'information dans les observations, et ce même en présence de contre-mesures rendant d'autres techniques classiques inopérantes. Cela permet une meilleure compréhension des fuites d’information exploitées par le réseau et d’affiner le diagnostic de l’évaluateur ou du développeur, afin de proposer des corrections.
Origine | Version validée par le jury (STAR) |
---|