Detection and characterization of salient moments for automatic summaries - Archive ouverte HAL Access content directly
Theses Year : 2021

Detection and characterization of salient moments for automatic summaries

Détection et caractérisation des moments saillants pour les résumés automatiques

(1)
1

Abstract

Video content is present in an ever-increasing number of fields, both scientific and commercial. Sports, particularly soccer, is one of the industries that has invested the most in the field of video analytics, due to the massive popularity of the game. Although several state-of-the-art methods rely on handcrafted heuristics to generate summaries of soccer games, they have proven that multiple modalities help detect the best actions of the game. On the other hand, the field of general-purpose video summarization has advanced rapidly, offering several deep learning approaches. However, many of them are based on properties that are not feasible for sports videos. Video content has been for many years the main source for automatic tasks in soccer but the data that registers all the events happening on the field have become lately very important in sports analytics, since these event data provide richer information and requires less processing. Considering that in automatic sports summarization, the goal is not only to show the most important actions of the game, but also to evoke as much emotion as those evoked by human editors, we propose a method to generate the summary of a soccer match video exploiting the event metadata of the entire match and the content broadcast on TV. We have designed an architecture, introducing (1) a Multiple Instance Learning method that takes into account the sequential dependency among events, (2) a hierarchical multimodal attention layer that grasps the importance of each event in an action and (3) a method to automatically generate multiple summaries of a soccer match by sampling from a ranking distribution, providing multiple candidate summaries which are similar enough but with relevant variability to provide different options to the final user.We also introduced solutions to some additional challenges in the field of sports summarization. Based on the internal signals of an attention model that uses event data as input, we proposed a method to analyze the interpretability of our model through a graphical representation of actions where the x-axis of the graph represents the sequence of events, and the y-axis is the weight value learned by the attention layer. This new representation provides a new tool for the editor containing meaningful information to decide whether an action is important. We also proposed the use of keyword spotting and boosting techniques to detect every time a player is mentioned by the commentators as a solution for the missing event data.
Le contenu vidéo est présent dans un nombre toujours plus grand de domaines, tant scientifiques que commerciaux. Le sport, en particulier le football, est l'une des industries qui a le plus investi dans le domaine de l'analyse vidéo, en raison de la popularité massive de ce sport. Bien que plusieurs méthodes de l'état de l'art utilisent des heuristiques pour générer des résumés de matchs de football, elles ont prouvé que de multiples modalités aident à détecter les meilleures actions du match. D'autre part, le domaine du résumé vidéo à usage général a progressé rapidement, offrant plusieurs approches d'apprentissage profond. Cependant, beaucoup d'entre elles sont basées sur des hypothèses qui ne sont pas réalisables pour les vidéos sportives. Le contenu vidéo a été pendant de nombreuses années la principale source pour les tâches automatiques dans le football, mais les données qui enregistrent tous les événements qui se produisent sur le terrain sont devenues dernièrement très importantes dans l'analyse du sport, car ces données d'événements fournissent des informations plus riches et nécessitent moins de traitement. Considérant que dans le résumé automatique de sports, l'objectif n'est pas seulement de montrer les actions les plus importantes du jeu, mais aussi d'évoquer autant d'émotions que celles évoquées par les éditeurs humains, nous proposons une méthode pour générer le résumé d'une vidéo de match de football en exploitant les métadonnées d'événement de tout le match et le contenu diffusé à la télévision. Nous avons conçu une architecture, introduisant (1) une méthode d'apprentissage d'instances multiples qui prend en compte la dépendance séquentielle entre les événements, (2) une couche d'attention multimodale hiérarchique qui saisit l'importance de chaque événement dans une action et (3) une méthode pour générer automatiquement plusieurs résumés d'un match de football en choisissant parmi une distribution de rangs, fournissant plusieurs résumés candidats qui sont suffisamment similaires mais avec une variabilité pertinente pour fournir différentes options à l'utilisateur final.De plus, nous avons proposé des solutions à certains défis supplémentaires dans le domaine du résumé des sports. À partir des signaux internes d'un modèle d'attention qui utilise des données d'événements comme entrée, nous avons introduit une représentation graphique des actions où l'axe des x du graphique représente la séquence d'événements et l'axe des y est la valeur du poids appris par la couche d'attention. Cette nouvelle représentation fournit un nouvel outil à l'éditeur contenant des informations significatives pour décider si une action est importante. Nous proposons également l'utilisation de techniques de repérage de mots-clés et de boosting pour détecter chaque fois qu'un joueur est mentionné par les commentateurs.
Fichier principal
Vignette du fichier
2021COAZ4104.pdf (38.17 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03652811 , version 1 (27-04-2022)

Identifiers

  • HAL Id : tel-03652811 , version 1

Cite

Laura Melissa Sanabria Rosas. Detection and characterization of salient moments for automatic summaries. Automatic Control Engineering. Université Côte d'Azur, 2021. English. ⟨NNT : 2021COAZ4104⟩. ⟨tel-03652811⟩
37 View
6 Download

Share

Gmail Facebook Twitter LinkedIn More