Microfluidic flow of biomimetic tissues - TEL - Thèses en ligne
Thèse Année : 2022

Microfluidic flow of biomimetic tissues

Écoulement microfluidique de tissus biomimétiques

Laura Casas Ferrer
  • Fonction : Auteur
  • PersonId : 1144799
  • IdRef : 262092395

Résumé

We designed a biomimetic prototissue as a model for cellular tissues that allows to identify the individual role of the different cellular constituents that play a role in the rheological behavior of tissues. The final goal is to characterize the flow behavior of this prototissue under microfluidic confinement. The first part of the Thesis focuses on the design and synthesis of the prototissue from the assembly of Giant Unilamellar Vesicles (GUVs). The ligand-receptor system that we used to drive the assembly was provided by the streptavidin-biotin pair. We have demonstrated that by changing the streptavidin-to-biotin ratio, the number of vesicles in solution and the biotin concentration in the vesicle membrane it is possible to tune the size of the aggregates and the compactness of the tissue. We have also been capable of changing the morphology of the biomimetic tissue from 3D-shapes to a 2D-monolayer structure by changing the incubation method. An alternative adhesion system based on DNA tethers was also evaluated. It proved to be effective in tuning the adhesion between vesicles, and was found to allow the design of prototissue with a high level of compaction. In the second part of the Thesis, the rheology of this biomimetic tissue was tested by means of a microfluidic setup. Specifically, a controlled pressure was applied and the deformation of the aggregate as it flowed through a constriction was tracked. The change in the aggregate size and shape was calculated for small aggregates, which contributed to elucidate the nature of their elastic behavior. For larger aggregates, the forward motion of the aggregate front in a microfluidic constriction as a function of time was measured. It was possible to observe a viscoelastic behavior, that we compared to the one observed in soft epithelial tissues. Both the prototissue model and the tools we developed to characterize its rheology can be implemented in the future to investigate cellular tissues mechanical properties varying its key properties: the adhesion between individual cells, the mechanical properties of the cytoskeleton and the cellular activity.
Nous avons conçu un prototissu biomimétique comme modèle de tissus cellulaires qui permet d'identifier le rôle individuel des différents constituants cellulaires qui jouent un rôle dans le comportement rhéologique des tissus. L'objectif final est de caractériser le comportement d'écoulement de ce prototissu sous confinement microfluidique. La première partie de la thèse se concentre sur la conception et la synthèse du prototissu à partir de l'assemblage de Vésicules Unilamellaires Géantes (GUVs). Le système ligand-récepteur que nous avons utilisé pour l'assemblage est la paire streptavidine-biotine. Nous avons démontré qu'en modifiant le rapport streptavidine-biotine, le nombre de vésicules en solution et la concentration de biotine dans la membrane des vésicules, il est possible de contrôler la taille des agrégats et la compacité du tissu. Nous avons également modifié la morphologie du tissu biomimétique en changeant la méthode d'incubation, passant ainsi de formes 3D à une structure monocouche 2D. Un autre système d'adhésion basé sur des complémentarités de séquences d’ADN a également été évalué. Il s'est avéré efficace pour contrôler l'adhésion entre les vésicules, et a permis de concevoir des prototissus avec un niveau élevé de compaction. Dans la deuxième partie de la thèse, la rhéologie de ce tissu biomimétique a été testée au moyen d'une configuration microfluidique. Plus précisément, une pression contrôlée a été appliquée et la déformation de l'agrégat lors de son écoulement à travers une constriction a été suivie. Le changement de taille et de forme de l'agrégat a été calculé pour les petits agrégats, ce qui a contribué à élucider la nature de leur comportement élastique. Pour les agrégats plus grands, le mouvement vers l'avant du front de l'agrégat dans une constriction microfluidique en fonction du temps a été mesuré. Il a été possible d'observer un comportement viscoélastique, que nous avons comparé à celui observé dans les tissus épithéliaux. Le modèle de prototissu et les outils que nous avons développés pour caractériser sa rhéologie peuvent être mis en oeuvre à présent pour étudier les propriétés mécaniques des tissus cellulaires en faisant varier ses propriétés clés : l'adhésion entre les cellules individuelles, les propriétés mécaniques du cytosquelette et l'activité cellulaire.
Fichier principal
Vignette du fichier
CASAS_FERRER_2022_archivage.pdf (45.65 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03704329 , version 1 (24-06-2022)

Identifiants

  • HAL Id : tel-03704329 , version 1

Citer

Laura Casas Ferrer. Microfluidic flow of biomimetic tissues. Biological Physics [physics.bio-ph]. Université de Montpellier, 2022. English. ⟨NNT : 2022UMONS001⟩. ⟨tel-03704329⟩
116 Consultations
11 Téléchargements

Partager

More