Theoretical and numerical analysis of systems modeling dislocations densities dynamics
Étude théorique et numérique des systèmes modélisant la dynamique des densités des dislocations
Résumé
In this thesis, we are interested in the theoretical and numerical studies of dislocations densities. Dislocations are linear defects that move in crystals when those are subjected to exterior stress. More generally, the dynamics of dislocations densities are described by a system of transport equations where the velocity field depends non locally on the dislocations densities. First, we are interested in the study of a one dimensional submodel of a (2 × 2) Hamilton-Jacobi system introduced by Groma and Balogh in 1999, proposed in the two dimensional case. For this system, we prove global existence and uniqueness results. Adding to that, considering nondecreasing initial data, we study this problem numerically by proposing a finite difference implicit scheme for which we show the convergence. Then, inspired by the first work, we show a more general theory which allows us to get similar results of existence and uniqueness of solution in the case of one dimensional eikonal systems. By considering nondecreasing initial data, we study this problem numerically. Under certain conditions on the velocity, we propose a finite difference implicit scheme allowing us to calculate the discrete solution and simulate then the dislocations dynamics via this model.
Dans cette thèse, nous nous intéressons à l’analyse théorique et numérique de la dynamique des densités des dislocations. Les dislocations sont des défauts linéaires qui se déplacent dans les cristaux lorsque ceux-ci sont soumis à des contraintes extérieures. D’une manière générale, la dynamique des densités des dislocations est décrite par un système d’équations de transport, où les champs de vitesse dépendent de manière non-locale des densités des dislocations. Au départ, notre travail se focalise sur l’étude d’un système unidimensionnel (2 × 2) de type Hamilton-Jacobi dérivé d’un système bidimensionnel proposé par Groma et Balogh en 1999. Pour ce modèle, nous montrons un résultat d’existence globale et d’unicité. En addition, nous nous intéressons à l’étude numérique de ce problème, complété par des conditions initiales croissantes, en proposant un schéma aux différences finies implicite dont on prouve la convergence. Ensuite, en s’inspirant du travail effectué pour la résolution de la dynamique des densités des dislocations, nous mettons en œuvre une théorie plus générale permettant d’obtenir un résultat similaire d’existence et d’unicité d’une solution dans le cas des systèmes de type eikonal unidimensionnels. En considérant des conditions initiales croissantes, nous faisons une étude numérique pour ce système. Sous certaines conditions de monotonies sur la vitesse, nous proposons un schéma aux différences finies implicite permettant de calculer la solution discrète et simuler ainsi la dynamique des dislocations à travers ce modèle.
Origine | Version validée par le jury (STAR) |
---|