Local and remote sources of Arctic air pollution - TEL - Thèses en ligne
Thèse Année : 2022

Local and remote sources of Arctic air pollution

Sources locales et éloignées de pollution atmosphérique dans l'Arctique

Résumé

The Arctic region is warming faster than any other region on Earth due to the effect of greenhouse gases, notably CO2, and short-lived climate forcers of anthropogenic origin, such as black carbon (BC). Over the last 20-30 years, remote anthropogenic emissions over mid-latitude regions have been decreasing. Anthropogenic emissions within the Arctic are also contributing and might increase in the future and further affect Arctic air pollution and climate. Natural emissions, such as sea-spray aerosols, also might increase due to on-going climate change. However, the processes and sources influencing Arctic aerosols and trace gases are poorly quantified, especially in wintertime. In this thesis, quasi-hemispheric and regional simulations are performed using the Weather Research Forecast model, coupled with chemistry (WRF-Chem). The model is used to investigate atmospheric composition over the wider Arctic and during two field campaigns, one in northern Alaska at Barrow, Utqiagvik in January and February 2014 and the second in Fairbanks, central Alaska in November and December 2019 during the French pre-ALPACA (Alaskan Layered Pollution And Chemical Analysis) campaign. First, modelled inorganic and sea-spray (SSA) aerosols are evaluated at remote Arctic sites during wintertime. Then, the model is improved with respect to SSA treatments, following evaluation against Barrow field campaign data, and their contribution to the total aerosol burden within the Arctic region is quantified. A series of sensitivity runs are performed over northern Alaska, revealing model uncertainties in processes influencing SSA in the Arctic such as the presence of sea-ice and open leads. Second, a sensitivity analysis is performed to investigate processes and sources influencing wintertime BC over the wider Arctic and over northern Alaska, with a focus on removal treatments and regional emissions. Variations in model sensitivity to wet and dry deposition is found across the Arctic and could explain model biases. Over northern Alaska, regional emissions from petroleum extraction are found to make an important contribution to observed BC. Model results are also sensitive to planetary boundary layer parameterisation schemes. Third, the improved version of the model is used to investigate the contribution of regional and local sources on air pollution in the Fairbanks area in winter 2019. Using up-to-date emissions, the model performs better in winter 2019 than in winter 2014, when compared to observations at background sites across Alaska. Underestimations in modelled BC and sulphate aerosols can be partly explained by lacking local and regional anthropogenic emissions. In the case of sulphate, additional secondary aerosol formation mechanisms under dark/cold conditions also need to be considered.
La région arctique se réchauffe plus rapidement que toute autre région de la planète en raison de l’effet des gaz à effet de serre, notamment le CO2, et des forçeurs climatiques à courte durée de vie d’origine anthropique, comme le carbone suie (BC). Au cours des 20 à 30 dernières années, les émissions anthropiques lointain au-dessus des régions de latitude moyenne ont diminué. Les émissions anthropiques dans l’Arctique y contribuent également et pourraient augmenter à l’avenir et influencer davantage la pollution atmosphérique et le climat de l’Arctique. Les émissions naturelles, telles que les aérosols d’origine marine, pourraient également augmenter en raison du changement climatique en cours. Cependant, les processus et les sources qui influencent les aérosols et les gaz traces dans l’Arctique sont mal quantifiés, surtout en hiver. Dans cette thèse, des simulations quasi-hémisphériques et régionales sont réalisées à l’aide du modèle Weather Research Forecast, couplé à la chimie (WRF-Chem). Le modèle est utilisé pour étudier la composition atmosphérique sur la région Arctique et lors de deux campagnes de terrain, l’une au nord de l’Alaska à Barrow, Utqiagvik en janvier et février 2014 et la seconde à Fairbanks, au centre de l’Alaska en novembre et décembre 2019 lors de la campagne française pré-ALPACA (Alaskan Layered Pollution And Chemical Analysis). Tout d’abord, les aérosols inorganiques et les aérosols de sel marin (SSA) modélisés sont évalués sur des sites arctiques pendant l’hiver. Ensuite, le modèle est amélioré en ce qui concerne les traitements des SSA, après évaluation par rapport aux données de la campagne de Barrow, et leur contribution à la charge totale d’aérosols dans la région arctique est quantifiée. Une série d’analyses de sensibilité est effectuée sur le nord de l’Alaska, révélant des incertitudes du modèle dans les processus influençant les SSA dans l’Arctique, tels que la présence de glace de mer et de chenaux ouverts. Ensuite, une analyse de sensibilité est effectuée pour étudier les processus et les sources qui influencent le BC hivernale dans l’ensemble de l’Arctique et au nord de l’Alaska, en se concentrant sur les traitements de dépôt et les émissions régionales. Des variations de la sensibilité du modèle aux dépôts humides et secs sont constatées dans tout l’Arctique et pourraient expliquer les biais du modèle. Dans le nord de l’Alaska, les émissions régionales provenant de l’extraction pétrolière contribuent de manière importante au BC observée. Les résultats du modèle sont également sensibles aux schémas de paramétrisation de la couche limite. Troisièmement, la version améliorée du modèle est utilisée pour étudier la contribution des sources régionales et locales à la pollution atmosphérique dans la région de Fairbanks pendant l’hiver 2019. En utilisant des émissions actualisées, le modèle donne de meilleurs résultats pour l’hiver 2019 que pour l’hiver 2014, lorsqu’on le compare aux observations effectuées sur des sites de fond en Alaska. Les sous-estimations des aérosols modélisés de BC et de sulfate s’expliquent en partie par le manque d’émissions anthropiques locales et régionales. Dans le cas du sulfate , des mécanismes supplémentaires de formation d’aérosols secondaires dans des conditions sombres/froides doivent également être pris en compte.
Fichier principal
Vignette du fichier
IOANNIDIS_Eleftherios_these_2022.pdf (83.81 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03889862 , version 1 (08-12-2022)

Identifiants

  • HAL Id : tel-03889862 , version 1

Citer

Eleftherios Ioannidis. Local and remote sources of Arctic air pollution. Atmospheric and Oceanic Physics [physics.ao-ph]. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS310⟩. ⟨tel-03889862⟩
119 Consultations
4 Téléchargements

Partager

More