Composition of cryptographic mechanisms and watermarking for the protection of externalized genetic data
Composition de mécanismes cryptographiques et de tatouage pour la protection de données génétiques externalisées
Résumé
Nowadays, cloud computing allows researchers and health professionals to flexibly store and process large amounts of genetic data remotely, without a need to purchase and to maintain their own infrastructures. These data are especially used in genome-wide association studies (GWAS) in order to conduct the identification of genetic variants that are associated with some diseases. However, genetic data outsourcing or sharing in the cloud induces many security issues. In addition, a human genome is very sensitive by nature and represents the unique biological identity of its owner. The objective of this thesis work is to protect genetic data during their sharing, storage and processing. We have developped new security tools that are based on watermarking and cryptographic mechanisms, as well as on the combination of them. First, we have proposed a privacy-preserving method that allows to compute the secure collapsing method based on the logistic regression model using homomorphic encryption (HE). To overcome the computational and storage overhead of HE-based solutions, we have developed a framework that allows secure performing of GWAS for rare variants without increasing complexity compared to its nonsecure version. It is based on several security mechanisms including encryption. In parallel of these works, we have exploited the semantic security of some HE schemes so as to develop a dynamic watermarking method that allows integrity control for encrypted data. At last, we have developed a robust watermarking tool for GWAS data for traitor tracing purposes.
De nos jours, le “cloud computing” permet de mutualiser et de traiter de grandes quantités de données génétiques à un coût minime et sans avoir à maintenir une infrastructure propre. Ces données sont notamment utilisées dans des études d'association pangénomiques (“Genome Wide Association Studies” ou GWAS) afin d’identifier des variants génétiques associées à certaines maladies. Cependant, leur externalisation induit de nombreux problèmes en matière de sécurité. Notamment, le génome humain représente l'unique identité biologique d’un individu et est donc par nature une information très sensible. L'objectif de ces travaux de thèse est de protéger des données génétiques lors de leur partage, stockage et traitement sur le cloud. Nous avons développé différents outils de sécurité fondés sur le tatouage, des mécanismes cryptographiques et leur combinaison. Dans un premier temps, en utilisant le chiffrement homomorphe, nous avons proposé une version originale sécurisée de l’approche GWAS fondée sur la technique dite “collapsing method” ; une technique qui s’appuie sur la régression logistique. Pour faire face aux problèmes de complexité de calcul et de mémoire liés à l’exploitation du chiffrement homomorphe, nous avons proposé un protocole qui profite de différents outils cryptographiques (PGP, fonction de hachage) pour partager entre plusieurs unités de recherche des études GWAS sur des variants rares de manière sécurisée, cela sans augmenter la complexité de calcul. En parallèle, nous avons développé une méthode de crypto-tatouage qui exploite la sécurité sémantique des schémas de chiffrement homomorphe, pour permettre à un cloud de protéger/vérifier l’intégrité de bases de données génétiques externalisées par différents utilisateurs. Ce schéma de crypto-tatouage est dynamique dans le sens où le tatouage est réactualisé au fil des mises à jour des données par leurs propriétaires sans cependant retatouer l’ensemble des jeux de données. Dans le même temps, nous avons proposé la première solution de tatouage robuste qui permet de protéger la propriété intellectuelle et le traçage de traitres pour des données génétiques utilisées dans des GWAS.
Origine | Version validée par le jury (STAR) |
---|