Goal-oriented exploration for reinforcement learning - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2022

Goal-oriented exploration for reinforcement learning

Exploration d’états buts pour l’apprentissage par renforcement

Résumé

Learning to reach goals is a competence of high practical relevance to acquire for intelligent agents. For instance, this encompasses many navigation tasks ("go to target X"), robotic manipulation ("attain position Y of the robotic arm"), or game-playing scenarios ("win the game by fulfilling objective Z"). As a living being interacting with the world, I am constantly driven by goals to reach, varying in scope and difficulty.Reinforcement Learning (RL) holds the promise to frame and learn goal-oriented behavior. Goals can be modeled as specific configurations of the environment that must be attained via sequential interaction and exploration of the unknown environment. Although various deep RL algorithms have been proposed for goal-oriented RL, existing methods often lack principled understanding, sample efficiency and general-purpose effectiveness. In fact, very limited theoretical analysis of goal-oriented RL was available, even in the basic scenario of finitely many states and actions.We first focus on a supervised scenario of goal-oriented RL, where a goal state to be reached in minimum total expected cost is provided as part of the problem definition. After formalizing the online learning problem in this setting often known as Stochastic Shortest Path (SSP), we introduce two no-regret algorithms (one is the first available in the literature, the other attains nearly optimal guarantees).Beyond training our RL agent to solve only one task, we then aspire that it learns to autonomously solve a wide variety of tasks, in the absence of any reward supervision. In this challenging unsupervised RL scenario, we advocate to "Set Your Own Goals" (SYOG), which suggests the agent to learn the ability to intrinsically select and reach its own goal states. We derive finite-time guarantees of this popular heuristic in various settings, each with its specific learning objective and technical challenges. As an illustration, we propose a rigorous analysis of the algorithmic principle of targeting "uncertain" goals which we also anchor in deep RL.The main focus and contribution of this thesis are to instigate a principled analysis of goal-oriented exploration in RL, both in the supervised and unsupervised scenarios. We hope that it helps suggest promising research directions to improve the interpretability and sample efficiency of goal-oriented RL algorithms in practical applications.
Apprendre à atteindre des buts est une compétence à acquérir à grande pertinence pratique pour des agents intelligents. Par exemple, ceci englobe de nombreux problèmes de navigation (se diriger vers telle destination), de manipulation robotique (atteindre telle position du bras robotique) ou encore certains jeux (gagner en accomplissant tel objectif). En tant qu'être vivant interagissant avec le monde, je suis constamment motivé par l'atteinte de buts, qui varient en portée et difficulté.L'Apprentissage par Renforcement (AR) est un paradigme prometteur pour formaliser et apprendre des comportements d'atteinte de buts. Un but peut être modélisé comme une configuration spécifique d'états de l'environnement qui doit être atteinte par interaction séquentielle et exploration de l'environnement inconnu. Bien que divers algorithmes en AR dit "profond" aient été proposés pour ce modèle d'apprentissage conditionné par des états buts, les méthodes existantes manquent de compréhension rigoureuse, d'efficacité d'échantillonnage et de capacités polyvalentes. Il s'avère que l'analyse théorique de l'AR conditionné par des états buts demeurait très limitée, même dans le scénario basique d'un nombre fini d'états et d'actions.Premièrement, nous nous concentrons sur le scénario supervisé, où un état but qui doit être atteint en minimisant l'espérance des coûts cumulés est fourni dans la définition du problème. Après avoir formalisé le problème d'apprentissage incrémental (ou ``online'') de ce modèle souvent appelé Plus Court Chemin Stochastique, nous introduisons deux algorithmes au regret sous-linéaire (l'un est le premier disponible dans la littérature, l'autre est quasi-optimal).Au delà d'entraîner l'agent d'AR à résoudre une seule tâche, nous aspirons ensuite qu'il apprenne de manière autonome à résoudre une grande variété de tâches, dans l'absence de toute forme de supervision en matière de récompense. Dans ce scénario non-supervisé, nous préconisons que l'agent sélectionne lui-même et cherche à atteindre ses propres états buts. Nous dérivons des garanties non-asymptotiques de cette heuristique populaire dans plusieurs cadres, chacun avec son propre objectif d'exploration et ses propres difficultés techniques. En guise d'illustration, nous proposons une analyse rigoureuse du principe algorithmique de viser des états buts "incertains", que nous ancrons également dans le cadre de l'AR profond.L'objectif et les contributions de cette thèse sont d'améliorer notre compréhension formelle de l'exploration d'états buts pour l'AR, dans les scénarios supervisés et non-supervisés. Nous espérons qu'elle peut aider à suggérer de nouvelles directions de recherche pour améliorer l'efficacité d'échantillonnage et l'interprétabilité d'algorithmes d'AR basés sur la sélection et/ou l'atteinte d'états buts dans des applications pratiques.
Fichier principal
Vignette du fichier
These_TARBOURIECH_Jean.pdf (6.06 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03947676 , version 1 (19-01-2023)

Identifiants

  • HAL Id : tel-03947676 , version 1

Citer

Jean Tarbouriech. Goal-oriented exploration for reinforcement learning. Artificial Intelligence [cs.AI]. Université de Lille, 2022. English. ⟨NNT : 2022ULILB014⟩. ⟨tel-03947676⟩
344 Consultations
175 Téléchargements

Partager

Gmail Facebook X LinkedIn More