Hybrid stress visco-plasticity : formulation, discrete approximation, and stochastic identification - TEL - Thèses en ligne
Thèse Année : 2022

Hybrid stress visco-plasticity : formulation, discrete approximation, and stochastic identification

Visco-plasticité des contraintes hybrides : formulation, approximation discrète et identification stochastique

Cong Uy Nguyen
  • Fonction : Auteur
  • PersonId : 1226293
  • IdRef : 26763420X

Résumé

In this thesis, a novel approach is developed for visco-plasticity and nonlinear dynamics problems. In particular, variational equations are elaborated following the Helligner-Reissner principle, so that both stress and displacement fields appear as unknown fields in the weak form. Three novel finite elements are developed. The first finite element is formulated for the axisymmetric problem, in which the stress field is approximated by low-order polynomials such as linear functions. This approach yields accurate solutions specifically in incompressible and stiff problems. In addition, a membrane and plate bending finite element are newly designed by discretizing the stress field using the lowest order Raviart-Thomas vector space RT0. This approach guarantees the continuity of the stress field over an entire discrete domain, which is a significant advantage in the numerical method, especially for the wave propagation problems. The developments are carried out for the viscoplastic constitutive behavior of materials, where the corresponding evolution equations are obtained by appealing to the principle of maximum dissipation. To solve the dynamic equilibrium equations, energy conserving and decaying schemes are formulated correspondingly. The energy conserving scheme is unconditional stable, since it can preserve the total energy of a given system under a free vibration, while the decaying scheme can dissipate higher frequency vibration modes. The last part of this thesis presents procedures for upscaling of the visco-plastic material behavior. Specifically, the upscaling is performed by stochastic identification method via Baysian updating using the Gauss-Markov-Kalman filter for assimilation of important material properties in the elastic and inelastic regimes.
Dans cette thèse, une nouvelle approche est développée pour les problèmes de viscoplasticité et de dynamique non linéaire. En particulier, les équations variationnelles sont élaborées selon le principe de Helligner-Reissner, de sorte que les champs de contrainte et de déplacement apparaissent comme des champs inconnus sous la forme faible. Trois nouveaux éléments finis sont développés. Le premier élément fini est formulé pour le problème axisymétrique, dans lequel le champ de contraintes est approximé par des polynômes d’ordre inférieur tels que des fonctions linéaires. Cette approche donne des solutions précises spécifiquement dans les problèmes incompressibles et rigides. De plus, un élément fini de flexion de membrane et de plaque est nouvellement conçu en discrétisant le champ de contraintes en utilisant l’espace vectoriel de Raviart-Thomas d’ordre le plus bas RT0. Cette approche garantit la continuité du champ de contraintes sur tout un domaine discret, ce qui est un avantage significatif dans la méthode numérique, notamment pour les problèmes de propagation des ondes. Les développements sont effectués pour le comportement constitutif visco-plastique des matériaux, où les équations d’évolution correspondantes sont obtenues en faisant appel au principe de dissipation maximale. Pour résoudre les équations d’équilibre dynamique, des schémas de conservation et de décroissance de l’énergie sont formulés en conséquence. Le schéma de conservation de l’énergie est inconditionnellement stable, car il peut préserver l’énergie totale d’un système donné sous une vibration libre, tandis que le schéma décroissant peut dissiper des modes de vibration à plus haute fréquence. La dernière partie de cette thèse présente les procédures d’upscaling du comportement des matériaux visco-plastiques. Plus précisément, la mise à l’échelle est effectuée par une méthode d’identification stochastique via une mise à jour baysienne en utilisant le filtre de Gauss-Markov-Kalman pour l’assimilation des propriétés importantes des matériaux dans les régimes élastique et inélastique.
Fichier principal
Vignette du fichier
These_UTC_Cong_Uy_Nguyen.pdf (10.42 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03984496 , version 1 (12-02-2023)

Identifiants

  • HAL Id : tel-03984496 , version 1

Citer

Cong Uy Nguyen. Hybrid stress visco-plasticity : formulation, discrete approximation, and stochastic identification. Mechanics [physics.med-ph]. Université de Technologie de Compiègne; Technische Universität Braunschweig (Allemagne), 2022. English. ⟨NNT : 2022COMP2695⟩. ⟨tel-03984496⟩
80 Consultations
25 Téléchargements

Partager

More