Direct Synthesis of Light Olefins Using CO and CO2 Hydrogenation Reactions
Synthèse Directe d'Oléfines Légères par des Réactions d'Hydrogénation du CO et du CO2
Résumé
CO and CO2 Hydrogenation are an attractive way to convert non-petroleum and renewable feedstocks such as biomass, plastic and organic waste into fuels and chemicals. Activity, selectivity to light olefins and stability are major challenges of these reactions over Fe catalysts. In this thesis, we synthesized different iron-based catalysts for both CO and CO2 hydrogenation in order to get highly selective, active and stable catalysts. For CO hydrogenation SiO2 was used as support while for CO2 hydrogenation reaction ZrO2 supported catalysts presented the most encouraging results. We relied on High Throughput Experimentation (HTE) to identify among 27 promoters the most efficient ones for FT synthesis at the same time that different selectivity trends were evaluated. HTE tests allowed us to clearly identify Sn, Sb, Bi and Pb as the most promising promoters in order to obtain Fe catalysts with higher activity in FT synthesis. Then, we focused on studying the strong promoting effects of Sb and Sn on the catalytic performance of SiO2 supported iron Fischer Tropsch catalysts using a combination of advanced and in-situ techniques. TEM in the activated FeSn/SiO2 catalyst showed highly dispersed Sn nanoparticles on the silica support. On the other hand, activated FeSb/SiO2 catalyst showed a core-shell morphology. Additionally, smaller amount of carbon deposition detected is crucial for better stability of the Sn- and Sb-promoted catalysts in FT reaction. Finally, we focused on the identification of efficient promoters for ZrO2 supported iron catalysts in CO2 hydrogenation reaction. We observed the most pronounced increase in the reaction rate for the K and Cs promoted catalysts. HTE clearly showed that the presence of K was essential to achieve higher light olefin selectivity. Additionally, Mo, Cu, Cs, Ce and Ga were identified as possible promoters to further increase the selectivity of CO2 hydrogenation to this fraction. The work performed during this thesis allowed to design new catalysts for CO and CO2 hydrogenation reaction that could be easily implemented at industrial level. Catalysts studied for both reactions showed improvement three key aspects: activity, selectivity, and stability.
L'hydrogénation du CO et du CO2 sont une voie intéressante de conversion des matières premières non pétrolières et renouvelables tels que la biomasse, le plastique et les déchets organiques, en carburant et en produits chimiques. L'activité, la sélectivité vers la production d’oléfines légères et la stabilité sont des défis majeurs de ces réactions sur les catalyseurs à base de fer. Dans cette thèse, nous avons synthétisé différents catalyseurs à base de fer pour l'hydrogénation du CO et du CO2 afin d'obtenir des catalyseurs hautement sélectifs, actifs et stables. Pour l'hydrogénation du CO, SiO2 a été utilisée comme support tandis que pour la réaction d'hydrogénation du CO2, les catalyseurs supportés par de la ZrO2 ont présenté les résultats les plus encourageants. Les résultats sont appuyés sur l'expérimentation à haut débit (EHD) pour identifier parmi 27 promoteurs les plus efficaces pour la synthèse de FT en évaluant également les différentes tendances de sélectivité en la réaction FT. Les tests EHD nous ont permis d'identifier clairement Sn, Sb, Bi et Pb comme les promoteurs les plus prometteurs afin d'obtenir des catalyseurs de Fe avec une plus grande activité. Après, nous nous sommes concentrés sur l'étude des promoteurs Sb et Sn, sur la performance catalytique des catalyseurs à base de fer supportés sur SiO2, en utilisant une combinaison de techniques avancées et in-situ. Les images MET du catalyseur FeSn/SiO2 activé ont montré des nanoparticules de Sn hautement dispersées sur le support de silice. D'autre part, le catalyseur FeSb/SiO2 activé a montré une morphologie coeur-coquille. Plus petite quantité de dépôt de carbone détectée est cruciale pour une meilleure stabilité des catalyseurs promus par Sn- et Sb dans la réaction FT. Finalement, nous nous sommes concentrés sur l'identification des promoteurs pour les catalyseurs de fer supportés sur ZrO2 pour la réaction d’hydrogénation du CO2. Nous avons observé une nette augmentation de la vitesse de réaction pour les catalyseurs promus par le K et le Cs. L’EHD a clairement montré que la présence de K est essentielle pour obtenir une plus grande sélectivité en oléfines légères. En plus, le Mo, Cu, Cs, Ce et Ga ont été identifiés comme des promoteurs capables d’augmenter encore la sélectivité en oléfines. Le travail effectué au cours de cette thèse a permis de concevoir de nouveaux catalyseurs pour la réaction d'hydrogénation du CO et du CO2 qui pourraient être facilement mis en oeuvre au niveau industriel. Les catalyseurs étudiés pour les deux réactions ont montré une amélioration de trois aspects clés : l'activité, la sélectivité et la stabilité.
Origine | Version validée par le jury (STAR) |
---|