Online machine learning-based predictive maintenance for the railway industry - TEL - Thèses en ligne
Thèse Année : 2023

Online machine learning-based predictive maintenance for the railway industry

Maintenance prévisionnelle basée sur l'apprentissage automatique en ligne dans le secteur ferroviaire

Résumé

Being an effective long-distance mass transit, the railway will continue to flourish for its limited carbon footprint in the environment. Ensuring the equipment's reliability and passenger safety brings forth the need for efficient maintenance. Apart from the prevalence of corrective and periodic maintenance, predictive maintenance has come into prominence lately. Recent advances in machine learning and the abundance of data drive practitioners to data-driven predictive maintenance. The common practice is to collect data to train a machine learning model, then deploy the model for production and keep it unchanged afterward. We argue that such practice is suboptimal on a data stream. The unboundedness of the stream makes the model prone to incomplete learning. Dynamic changes on the stream introduce novel concepts unseen by the model and decrease its accuracy. The velocity of the stream makes manual labeling infeasible and disables supervised learning algorithms. Therefore, switching from a static, offline learning paradigm to an adaptive, online one is necessary, especially when new generations of connected trains continuously generating sensor data have already been a reality. We investigate the applicability of online machine learning for predictive maintenance on typical complex systems in the railway. First, we develop InterCE as an active learning-based framework that extracts cycles from an unlabeled stream by interacting with a human expert. Then, we implement a long short-term memory autoencoder to transform the extracted cycles into feature vectors that are more compact yet remain representative. Finally, we design CheMoc as a framework that continuously monitors the condition of the systems using online adaptive clustering. Our methods are evaluated on the passenger access systems on two fleets of passenger trains managed by the national railway company SNCF of France.
En tant que moyen de transport en commun efficace sur de longues distances, le chemin de fer continuera de prospérer pour son empreinte carbone limitée dans l'environnement. Assurer la fiabilité des équipements et la sécurité des passagers fait ressortir la nécessité d'une maintenance efficace. Outre la maintenance corrective et périodique courante, la maintenance prédictive a pris de l'importance ces derniers temps. Les progrès récents de l'apprentissage automatique et l'abondance de données poussent les praticiens à la maintenance prédictive basée sur les données. La pratique courante consiste à collecter des données pour former un modèle d'apprentissage automatique, puis à déployer le modèle pour la production et à le conserver inchangé par la suite. Nous soutenons qu'une telle pratique est sous-optimale sur un flux de données. Le caractère illimité du flux rend le modèle sujet à un apprentissage incomplet. Les changements dynamiques sur le flux introduisent de nouveaux concepts invisibles pour le modèle et diminuent sa précision. La vitesse du flux rend l'étiquetage manuel impossible et désactive les algorithmes d'apprentissage supervisé. Par conséquent, il est nécessaire de passer d'un paradigme d'apprentissage statique et hors ligne à un paradigme adaptatif en ligne, en particulier lorsque de nouvelles générations de trains connectés générant en continu des données de capteurs sont déjà une réalité. Nous étudions l'applicabilité de l'apprentissage automatique en ligne pour la maintenance prédictive sur des systèmes complexes typiques du secteur ferroviaire. Tout d'abord, nous développons InterCE en tant que framework basé sur l'apprentissage actif pour extraire des cycles d'un flux non étiqueté en interagissant avec un expert humain. Ensuite, nous implémentons un auto-encodeur à mémoire longue et courte durée pour transformer les cycles extraits en vecteurs de caractéristiques plus compacts tout en restant représentatifs. Enfin, nous concevons CheMoc comme un framework pour surveiller en permanence l'état des systèmes en utilisant le clustering adaptatif en ligne. Nos méthodes sont évaluées sur les systèmes d'accès voyageurs sur deux flottes de trains gérés par la société nationale des chemins de fer SNCF de la France.
Fichier principal
Vignette du fichier
122185_NGUYEN_2023_archivage.pdf (22.53 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04164338 , version 1 (18-07-2023)

Identifiants

  • HAL Id : tel-04164338 , version 1

Citer

Minh Huong Le Nguyen. Online machine learning-based predictive maintenance for the railway industry. Machine Learning [stat.ML]. Institut Polytechnique de Paris, 2023. English. ⟨NNT : 2023IPPAT027⟩. ⟨tel-04164338⟩
650 Consultations
205 Téléchargements

Partager

More