Optical spectroscopy of graphene quantum dots and halide perovskite nanocrystals
Spectroscopie optique de boîtes quantiques de graphène et de nanocristaux de pérovskites halogénées
Résumé
This work focuses on the optical spectroscopy of two classes of materials using fluorescence microscopy at room temperature.First, halide perovskites, a class of semiconductors that have known a surge in interest in the last ten years because of their outstanding optoelectronic properties, making them a promising platform for photovoltaic applications, but also light emission in diodes, lasers, and quantum devices. These crystalline materials consist of corner-sharing octahedra with a metallic ion at the center, often lead, and halide ions at the corners: Cl, Br, or I. A cation completes the structure. It is either organic, for example, methylammonium (MA) or formamidinium, or inorganic, for example, cesium. In the context of light emission, halide perovskites are an excellent choice to address the problem of the green gap, that is, the lack of efficient emitters in the green region of the optical spectrum, because of the possibility to tune their band gap thanks to an informed choice of the halide during the synthesis.Moreover, because the synthesis is done at room temperature and involves soft chemistry steps, they are promising for industrial applications. The synthesis and characterization of CsPbBr₃ nanocrystals emitting in the optical spectrum's green region using a new reprecipitation-based method is reported. In particular, the nanocrystals' high calibration and good stability are highlighted.The second part of this study is about graphene quantum dots. Those low-dimensional objects allow the opening of the band gap of graphene, making them fluorescent. These emitters are promising because their atomically-thin structure and tunability make them suitable for realizing nano-sensors. Building on the recently studied structure-properties relationship of rod-shaped graphene quantum dots, a thorough single-molecule study of highly fluorescent graphene quantum dots with 96 sp² carbon atoms is reported. The excellent purity of the samples was highlighted. The study of the time dynamics of those single-photon emitters in a polystyrene matrix allowed estimating the characteristic times of the transient dynamic of the quantum dots.Finally, the third part reports the study of the graphene quantum dots on a perovskite surface. The surface of perovskites is of peculiar interest for the realization of devices with these semiconductors, making it an interesting playground to use graphene quantum dots. To that end, the quantum dots were deposited on a millimetric MAPbBr₃ single-crystal surface. - As thin films deposited on the perovskite, the graphene quantum dots present photophysics compatible with the formation of excimers. - As the concentration of quantum dots on the surface is lowered, diffraction-limited spots are observed. The time-domain study of the photoluminescence reveals jumps between discrete states of the system. - The frequency-domain investigation of the intensity of photoluminescence of these diffraction-limited emitters is dominated by 1/f noise, which highly contrasts the stable, shot-noise-dominated dynamics of the single emitters when studied in a polystyrene matrix.
Ce travail se concentre sur la spectroscopie optique de deux classes de matériaux en utilisant la microscopie de fluorescence à température ambiante.Tout d'abord, les pérovskites halogénées, une classe de semi-conducteurs qui ont connu un regain d'intérêt au cours des dix dernières années en raison de leurs propriétés optoélectroniques exceptionnelles, ce qui en fait une plate-forme prometteuse pour les applications photovoltaïques, mais aussi pour l'émission de lumière dans les diodes, les lasers et les dispositifs quantiques. Ces matériaux cristallins sont constitués d'octaèdres dont les sommets sont partagés. Un ion métallique est positionné au centre, souvent du plomb, et des ions halogénures aux sommets : Cl, Br ou I. Un cation complète la structure. Il est soit organique, par exemple le méthylammonium (MA) ou le formamidinium, soit inorganique, par exemple le césium. Dans le contexte de l'émission de lumière, les pérovskites halogénées constituent un excellent choix pour résoudre le problème du green gap, c'est-à-dire le manque d'émetteurs efficaces dans la région verte du spectre optique, en raison de la possibilité d'ajuster leur bande interdite grâce à un choix éclairé de l'halogénure lors de la synthèse.De plus, comme la synthèse se fait à température ambiante et implique des étapes de chimie simples, ils sont prometteurs pour les applications industrielles. La synthèse et la caractérisation de nanocristaux de CsPbBr₃ émettant dans la région verte du spectre optique à l'aide d'une nouvelle méthode basée sur la précipitation est rapportée. En particulier, la calibration élevé et la bonne stabilité des nanocristaux sont mis en évidence.La deuxième partie de cette étude porte sur les boîtes quantiques de graphène. Ces objets de faible dimension permettent d'ouvrir la bande interdite du graphène, ce qui les rend fluorescents. Ces émetteurs sont prometteurs parce que leur structure atomiquement fine et leur accordabilité les rendent aptes à réaliser des nanocapteurs. En s'appuyant sur la relation structure-propriétés récemment étudiée des boîtes quantiques de graphène rectangulaires, une étude approfondie au niveau de l'objet unique de ces boîtes quantiques hautement fluorescentes avec 96 atomes de carbone sp² est rapportée. L'excellente pureté des échantillons a été mise en évidence. L'étude de la dynamique temporelle de ces émetteurs de photons uniques dans une matrice de polystyrène a permis d'estimer les temps caractéristiques de la dynamique transitoire des points quantiques.Enfin, la troisième partie rapporte l'étude des points quantiques de graphène sur une surface de pérovskite. La surface des pérovskites présente un intérêt particulier pour la réalisation de dispositifs avec ces semi-conducteurs, ce qui en fait un terrain de jeu intéressant pour l'utilisation des boîtes quantiques de graphène. À cette fin, les boîtes quantiques ont été déposés sur la surface de monocristaux millimétriques de MAPbBr₃. - En tant que films minces déposés sur la pérovskite, les boîtes quantiques de graphène présentent une photophysique compatible avec la formation d'excimères. - Lorsque la concentration de boîtes quantiques sur la surface est réduite, des taches limitées par la diffraction sont observées. L'étude de la photoluminescence dans le domaine temporel révèle des sauts entre des états discrets du système. - L'étude dans le domaine des fréquences de l'intensité de la photoluminescence de ces émetteurs limités par la diffraction est dominée par le bruit en 1/f, ce qui contraste fortement avec la dynamique stable, dominée par le bruit de grenaille, des émetteurs uniques lorsqu'ils sont étudiés dans une matrice de polystyrène.
Origine | Version validée par le jury (STAR) |
---|