Interpretable Music Recommender Systems - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Interpretable Music Recommender Systems

Systèmes de recommandation musicale interprétables

Résumé

‘‘Why do they keep recommending me this music track?’’ ‘‘Why did our system recommend these tracks to users?’’ Nowadays, streaming platforms are the most common way to listen to recorded music. Still, music recommendations — at the heart of these platforms — are not an easy feat. Sometimes, both users and engineers may be equally puzzled about the behaviour of a music recommendation system (MRS). MRS have been successfully employed to help explore catalogues that may be as large as tens of millions of music tracks. Built and optimised for accuracy, real-world MRS often end up being quite complex. They may further rely on a range of interconnected modules that, for instance, analyse audio signals, retrieve metadata about albums and artists, collect and aggregate user feedbacks on the music service, and compute item similarities with collaborative filtering. All this complexity hinders the ability to explain recommendations and, more broadly, explain the system. Yet, explanations are essential for users to foster a long-term engagement with a system that they can understand (and forgive), and for system owners to rationalise failures and improve said system. Interpretability may also be needed to check the fairness of a decision or can be framed as a means to control the recommendations better. Moreover, we could also recursively question: Why does an explanation method explain in a certain way? Is this explanation relevant? What could be a better explanation? All these questions relate to the interpretability of MRSs. In the first half of this thesis, we explore the many flavours that interpretability can have in various recommendation tasks. Indeed, since there is not just one recommendation task but many (e.g., sequential recommendation, playlist continuation, artist similarity), as well as many angles through which music may be represented and processed (e.g., metadata, audio signals, embeddings computed from listening patterns), there are as many settings that require specific adjustments to make explanations relevant. A topic like this one can never be exhaustively addressed. This study was guided along some of the mentioned modalities of musical objects: interpreting implicit user logs, item features, audio signals and similarity embeddings. Our contribution includes several novel methods for eXplainable Artificial Intelligence (XAI) and several theoretical results, shedding new light on our understanding of past methods. Nevertheless, similar to how recommendations may not be interpretable, explanations about them may themselves lack interpretability and justifications. Therefore, in the second half of this thesis, we found it essential to take a step back from the rationale of ML and try to address a (perhaps surprisingly) understudied question in XAI: ‘‘What is interpretability?’’ Introducing concepts from philosophy and social sciences, we stress that there is a misalignment in the way explanations from XAI are generated and unfold versus how humans actually explain. We highlight that current research tends to rely too much on intuitions or hasty reduction of complex realities into convenient mathematical terms, which leads to the canonisation of assumptions into questionable standards (e.g., sparsity entails interpretability). We have treated this part as a comprehensive tutorial addressed to ML researchers to better ground their knowledge of explanations with a precise vocabulary and a broader perspective. We provide practical advice and highlight less popular branches of XAI better aligned with human cognition. Of course, we also reflect back and recontextualise our methods proposed in the previous part. Overall, this enables us to formulate some perspective for our field of XAI as a whole, including its more critical and promising next steps as well as its shortcomings to overcome.
« Pourquoi est-ce qu’on me recommande toujours les même musiques ? » « Pourquoi notre système recommande-t’il cela aux utilisateurs ? » De nos jours, les plateformes de streaming sont le moyen le plus courant d'écouter de la musique enregistrée. Pourtant, les recommandations musicales — au cœur de ces plateformes — sont loin d’être une mince affaire. Il arrive parfois qu’utilisateurs et ingénieurs soient tout aussi perplexes du comportement d’un système de recommandation musicale (SRM). Les SRM ont été utilisés avec succès pour aider à explorer des catalogues comptant des dizaines de millions de titres musicaux. Construits et optimisés pour la précision, les SRM industriels sont souvent assez complexes. Ils peuvent en outre dépendre de nombreux modules interconnectés qui, notamment, analysent les signaux audio, récupèrent les métadonnées d’albums et artistes et les interactions des utilisateurs du service, et estiment des similarités basées sur du filtrage collaboratif. Cette complexité va en l’encontre de la capacité d'expliquer les recommandations et, plus généralement, ces systèmes. Pourtant, les explications sont essentielles pour fidéliser des utilisateurs sur le long termes avec un système qu'ils peuvent comprendre (et pardonner), et pour les propriétaires du système pour rationaliser les erreurs dudit système. L'interprétabilité peut également être nécessaire pour vérifier l'équité d'une décision ou peut être envisagées comme un moyen de rendre les recommandations plus contrôlables. Nous pouvons également récursivement demander : pourquoi une méthode d'explication explique-t-elle d'une certaine manière ? Cette explication est-elle pertinente ? Quelle pourrait être une meilleure explication ? Toutes ces questions sont liées à l'interprétabilité des SRM. Dans une première partie, nous explorons les multiples visages de l'interprétabilité dans diverses tâches de recommandation. En effet, puisqu'il n'y a pas une seule tâche de recommandation mais plusieurs (e.g., recommandation séquentielle, continuation de playlists, similarité artistes), ainsi que de nombreuses modalités de représentation de la musique (e.g., métadonnées, signaux audio, plongements), il y a autant de tâches possibles d’explications nécessitant des ajustements. Notre étude a été guidée par l’exploration des modalités sus-mentionnées : l'interprétation des signaux implicites utilisateurs, des caractéristiques, des signaux audio, et des inter-similarités. Notre thèse présente plusieurs nouvelles méthodes pour l'IA explicable (XAI) et plusieurs résultats théoriques, portant un nouvel éclairage sur notre compréhension des méthodes passées. Néanmoins, les méthodes d’explications peuvent à leur tour manquer d'interprétabilité. C'est pourquoi, une deuxième partie, nous avons jugé essentiel de prendre du recul par rapport aux discours habituels de l’IA et d'essayer de répondre à une question paradoxalement peu claire pour l’XAI : « Qu'est-ce que l'interprétabilité ? » En s'appuyant sur des concepts issus des sciences sociales, nous soulignons qu'il existe un décalage entre la manière dont les explications de l'XAI sont générées et la manière dont les humains expliquent réellement. Nous suggérons que la recherche actuelle a tendance à trop s'appuyer sur des intuitions et des réductions hâtive de réalités complexes en termes mathématiques commodes, conduisant à ériger des hypothèses en normes discutables (e.g., la parcimonie entraîne l'interprétabilité). Nous avons pensé cette partie comme un tutoriel destiné aux chercheurs en IA afin de renforcer leur connaissance des explications avec un vocabulaire précis et une perspective plus large. Nous résumons des conseils pratiques et mettons en évidence des branches moins populaires de l'XAI mieux alignées avec l’humain. Cela nous permet de formuler une perspective globale pour notre domaine de l'XAI, y compris ses prochaines étapes les plus critiques et prometteuses ainsi que ses lacunes à surmonter.
Fichier principal
Vignette du fichier
137677_AFCHAR_2023_archivage.pdf (14.06 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04496395 , version 1 (08-03-2024)

Identifiants

  • HAL Id : tel-04496395 , version 1

Citer

Darius Afchar. Interpretable Music Recommender Systems. Artificial Intelligence [cs.AI]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS608⟩. ⟨tel-04496395⟩
74 Consultations
35 Téléchargements

Partager

Gmail Facebook X LinkedIn More