Cliques statiques et temporelles : algorithmes d'énumération et de détection de communautés - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Static and temporal cliques : enumeration algorithms and community detection

Cliques statiques et temporelles : algorithmes d'énumération et de détection de communautés

Alexis Baudin

Résumé

Graphs are mathematical objects used to model interactions or connections between entities of various types. A graph can represent, for example, a social network that connects users to each other, a transport network like the metro where stations are connected to each other, or a brain with the billions of interacting neurons it contains. In recent years, the dynamic nature of these structures has been highlighted, as well as the importance of taking into account the temporal evolution of these networks to understand their functioning. While many concepts and algorithms have been developed on graphs to describe static network structures, much remains to be done to formalize and develop relevant algorithms to describe the dynamics of real networks. This thesis aims to better understand how massive graphs are structured in the real world, and to develop tools to extend our understanding to structures that evolve over time. It has been shown that these graphs have particular properties, which distinguish them from theoretical or randomly drawn graphs. Exploiting these properties then enables the design of algorithms to solve certain difficult problems much more quickly on these instances than in the general case. My PhD thesis focuses on cliques, which are groups of elements that are all connected to each other. We study the enumeration of cliques in static and temporal graphs and the detection of communities they enable. The communities of a graph are sets of vertices such that, within a community, the vertices interact strongly with each other, and little with the rest of the graph. Their study helps to understand the structural and functional properties of networks. We are evaluating our algorithms on massive real-world graphs, opening up new perspectives for understanding interactions within these networks. We first work on graphs, without taking into account the temporal component of interactions. We begin by using the clique percolation method of community detection, highlighting its limitations in memory, which prevent it from being applied to graphs that are too massive. By introducing an approximate problem-solving algorithm, we overcome this limitation. Next, we improve the enumeration of maximal cliques in the case of bipartite graphs. These correspond to interactions between groups of vertices of different types, e.g. links between people and viewed content, participation in events, etc. Next, we consider interactions that take place over time, using the link stream formalism. We seek to extend the algorithms presented in the first part, to exploit their advantages in the study of temporal interactions. We provide a new algorithm for enumerating maximal cliques in link streams, which is much more efficient than the state-of-the-art on massive datasets. Finally, we focus on communities in link streams by clique percolation, developing an extension of the method used on graphs. The results show a significant improvement over the state of the art, and we analyze the communities obtained to provide relevant information on the organization of temporal interactions in link streams. My PhD work has provided new insights into the study of massive real-world networks. This shows the importance of exploring the potential of graphs in a real-world context, and could contribute to the emergence of innovative solutions for the complex challenges of our modern society.
Les graphes sont des objets mathématiques qui permettent de modéliser des interactions ou connexions entre entités de types variés. Un graphe peut représenter par exemple un réseau social qui connecte les utilisateurs entre eux, un réseau de transport comme le métro où les stations sont connectées entre elles, ou encore un cerveau avec les milliards de neurones en interaction qu'il contient. Depuis quelques années, la forte dynamicité de ces structures a été mise en évidence, ainsi que l'importance de prendre en compte l'évolution temporelle de ces réseaux pour en comprendre le fonctionnement. Alors que de nombreux concepts et algorithmes ont été développés sur les graphes pour décrire des structures de réseaux statiques, il reste encore beaucoup à faire pour formaliser et développer des algorithmes pertinents pour décrire la dynamique des réseaux réels. Cette thèse vise à mieux comprendre comment sont structurés les graphes massifs qui sont issus du monde réel et à développer des outils pour étendre notre compréhension à des structures évoluant dans le temps. Il a été montré que ces graphes ont des propriétés particulières, qui les distinguent des graphes théoriques ou tirés aléatoirement. Exploiter ces propriétés permet alors de concevoir des algorithmes pour résoudre certains problèmes difficiles beaucoup plus rapidement sur ces instances que dans le cas général. La thèse se focalise sur les cliques, qui sont des groupes d'éléments tous connectés entre eux. Nous étudions l'énumération des cliques dans les graphes statiques et temporels et la détection de communautés qu'elles permettent de mettre en œuvre. Les communautés d'un graphe sont des ensembles de sommets tels qu'au sein d'une communauté, les sommets interagissent fortement entre eux, et peu avec le reste du graphe. Leur étude aide à comprendre les propriétés structurelles et fonctionnelles des réseaux. Nous évaluons nos algorithmes sur des graphes massifs issus du monde réel, ouvrant ainsi de nouvelles perspectives pour comprendre les interactions au sein de ces réseaux. Nous travaillons d'abord sur des graphes, sans tenir compte de la composante temporelle des interactions. Nous commençons par utiliser la méthode de détection de communautés par percolation de cliques, en mettant en évidence ses limites en mémoire, qui empêchent de l'appliquer à des graphes trop massifs. En introduisant un algorithme de résolution approchée du problème, nous dépassons cette limite. Puis, nous améliorons l'énumération des cliques maximales dans le cas des graphes particuliers dits bipartis. Ils correspondent à des interactions entre des groupes de sommets de type différent, par exemple des liens entre des personnes et du contenu consulté, la participation à des événements, etc. Ensuite, nous considérons des interactions qui ont lieu au cours du temps, grâce au formalisme des flots de liens. Nous cherchons à étendre les algorithmes présentés en première partie, pour exploiter leurs avantages dans l'étude des interactions temporelles. Nous fournissons un nouvel algorithme d'énumération des cliques maximales dans les flots de liens, beaucoup plus efficace que l'état de l'art sur des jeux de données massifs. Enfin, nous nous intéressons aux communautés dans les flots de liens par percolation de cliques, en développant une extension de la méthode utilisée sur les graphes. Les résultats montrent une amélioration significative par rapport à l'état de l'art, et nous analysons les communautés obtenues pour fournir des informations pertinentes sur l'organisation des interactions temporelles dans les flots de liens. Mon travail de thèse a permis d’apporter de nouvelles réflexions sur l’étude des réseaux massifs issus du monde réel. Cela montre l'importance d'explorer le potentiel des graphes dans un contexte réel, et pourrait contribuer à l'émergence de solutions novatrices pour les défis complexes de notre société moderne.
Fichier principal
Vignette du fichier
140891_BAUDIN_2023_archivage.pdf (7.1 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04511282 , version 1 (19-03-2024)

Identifiants

  • HAL Id : tel-04511282 , version 1

Citer

Alexis Baudin. Cliques statiques et temporelles : algorithmes d'énumération et de détection de communautés. Algorithme et structure de données [cs.DS]. Sorbonne Université, 2023. Français. ⟨NNT : 2023SORUS609⟩. ⟨tel-04511282⟩
23 Consultations
2 Téléchargements

Partager

Gmail Facebook X LinkedIn More