Cooperative control of eco-driving trajectories for a fleet of electric connected and autonomous vehicles - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Cooperative control of eco-driving trajectories for a fleet of electric connected and autonomous vehicles

Contrôle coopératif des trajectoires d’éco-conduite pour une flotte de véhicules électriques connectés et autonomes

Vinith Kumar Lakshmanan
  • Fonction : Auteur
  • PersonId : 1372485
  • IdRef : 271065583

Résumé

Electric Connected and Autonomous Vehicles (CAVs) that maximize energy efficiency can be considered an integrated approach to meet the various trends, mainly green and digital transition, in the automotive industry. Energy-saving strategies for CAVs on the vehicle level can be categorized into Eco-Routing (ER) and Eco-Driving (ED). With increased penetration of CAVs, such vehicles can cooperate rather than compete for right of way, giving rise to Cooperative Connected and Automated Vehicles (CCAVs). Based on the level of information shared and the motivation for energy efficiency, the behavior of CCAVs can be categorized into Non-Cooperative (NC), Cooperative (C), and Centralized Cooperative (CC) ED strategies. Each CCAV optimizes for itself in NC-ED and shares only its instantaneous states with its neighbors, while in C-ED, it shares its future intentions. Each CCAV's control action optimizes for the entire group in the CC-ED.The main objectives of this thesis are to experimentally assess a known baseline NC-ED strategy for a single CAV; to obtain analytical eco-driving solutions for a fleet of electric CCAVs, with varying levels of cooperation, for platooning and un-signalized intersection scenarios; and to evaluate the influence of the varying levels of cooperation, namely, NC-ED, C-ED, and CC-ED, on fleet energy consumption. The thesis first introduces a known NC-ED strategy for a single CAV that forms the basis for this thesis. ED is formulated as an optimal control problem for an unconstrained and car-following scenario and solved using Pontryagin's Minimum Principle (PMP). The baseline NC-ED car-following strategy predicts the lead vehicle's motion under Constant Acceleration (CA) to facilitate analytical closed-form solutions. In a chapter of this thesis, more sophisticated lead vehicle prediction models, namely Constant Acceleration-Average Braking (CA-AB) and EDM-LOS based Predictor (EDM-LOSP), are developed in the absence of V2V communication. The results distinguished the performance of the predictors in urban routes, where the ego vehicle using EDM-LOSP performed better than CA-AB with 4 % energy gain, while CA-AB had 4.5 % over the baseline CA. The baseline NC-ED car-following scenario is extended to a platooning ED scenario. An OCP is formulated for the three levels of cooperation, and analytical solutions are obtained using PMP. Platoons with the three cooperative strategies are evaluated against a baseline using Adaptive Cruise Control in a simulation environment. The results indicate higher energy saving with increased levels of cooperation. The CC-ED platoon performed best with 2.5 % energy saving over the NC-ED platoon on a WLTC High cycle. This thesis further presents an OCP formulated for a set of CCAVs safely crossing an un-signalized intersection while minimizing energy consumption. The OCP is formulated for two levels of cooperation: NC-ED and C-ED. The conflicts that arise in an intersection are analyzed and transformed into constraints. The OCP with the constraints is solved using PMP, and analytical solutions are presented. The two strategies are evaluated against Intelligent Driver Model (IDM) as a baseline for various flow rates. The results indicate that C-ED performs best, with 23.7 % energy gains over IDM. Finally, this thesis presents an experimental implementation of the baseline NC-ED strategy in a Renault Zoe electric car. The ED solutions are implemented via a tablet, that displays the computed optimal speed for the driver to follow in the next second. The implementation of the algorithm consists of two parts: an ED speed profile predicted at the trip's start under certain assumptions and an ED speed profile computed in real-time advising the driver. In this work, the driven profiles are analyzed a posteriori to study the impact of the assumptions made at the start of a trip. The results indicate the importance of having accurate information on traffic and traffic light behavior.
Les véhicules électriques connectés et autonomes (CAV) qui maximisent l'efficacité énergétique peuvent être considérés comme une approche intégrée pour répondre aux différentes tendances, notamment la transition verte et numérique, dans l'industrie automobile. Les stratégies d'économie d'énergie pour les CAV peuvent être classées en écoroutage (ER) et écoconduite (ED). Avec l'augmentation de la pénétration des CAV, ces véhicules peuvent coopérer plutôt que de se disputer le droit de passage, ce qui donne naissance aux véhicules coopératifs connectés et automatisés (CCAV). En fonction du niveau d'information partagé et de la motivation pour l'efficacité énergétique, les stratégies d'ED des CCAV peuvent être catégorisées comme Non Coopératives (NC), Coopératives (C) et Coopératives Centralisées (CC). Les objectifs principaux de cette thèse sont d'évaluer expérimentalement une stratégie de base connue de NC-ED pour un seul CCAV, d'obtenir des solutions analytiques d'ED pour une flotte de CCAV électriques avec différents niveaux de coopération pour des scénarios de peloton et d'intersection sans signalisation, et d'évaluer l'influence des différents niveaux de coopération sur la consommation d'énergie de la flotte. La thèse présente en premier lieu une stratégie NC-ED connue pour un seul CAV qui constitue la base de cette recherche. L'ED est formulé comme un Problème de Commande Optimale (OCP), pour un scénario de suivi de voiture et sans contraintes, et résolu par le Principe du Minimum de Pontryagin (PMP). La stratégie de suivi de voiture NC-ED de base prédit le mouvement du véhicule d'avant en cas d'accélération constante (CA) afin de permettre des solutions analytiques. Dans cette thèse, des modèles de prédiction plus sophistiqués du véhicule d'avant, à savoir le CA-AB et le EDM-LOSP, sont développés en l'absence de communication V2V. Les résultats indiquent que le véhicule ego utilisant l'EDM-LOSP est plus performant que le CA-AB avec un gain d'énergie de 4 %, tandis que le CA-AB est plus performant de 4,5 % que le CA de base sur des trajets urbains.Le scénario de base NC-ED de suivi de voiture est étendu à un scénario ED en peloton. Un OCP est formulé pour les trois niveaux de coopération et des solutions analytiques sont obtenues à l'aide du PMP. Les pelotons utilisant les trois stratégies de coopération sont évalués par rapport à un scénario de référence utilisant un régulateur de vitesse adaptatif dans un environnement de simulation. Les résultats indiquent une économie d'énergie plus importante avec des niveaux de coopération plus élevés. Le peloton CC-ED présente une économie d'énergie meilleure de 2,5 %, sur un cycle WLTC High, par rapport au peloton NC-ED. Cette thèse présente en outre un OCP formulé pour un ensemble de CCAVs traversant en toute sécurité une intersection sans signalisation en minimisant la consommation d'énergie. L'OCP est formulé pour deux niveaux de coopération : NC-ED et C-ED. L'OCP est résolu à l'aide de PMP, des solutions sont présentés. Les deux stratégies sont évaluées par rapport à l'IDM comme référence pour différents débits. Les résultats indiquent que la stratégie C-ED est la plus performante, avec un gain énergétique de 23,7 %. Enfin, cette thèse présente une approche expérimentale de mise en œuvre de la stratégie de référence NC-ED dans une voiture électrique Renault Zoé. Les solutions ED sont mises en œuvre via une tablette, qui affiche la vitesse optimale calculée pour que le conducteur puisse la suivre dans les secondes suivantes. La mise en œuvre de l'algorithme se compose de deux parties : un profil de vitesse prévu au début du voyage et un profil de vitesse ED calculé en temps réel afin de conseiller le conducteur. Dans ce travail, les profils de conduite sont analysés a posteriori pour étudier l'impact des hypothèses faites au début d'un voyage. Les résultats indiquent l'importance d'avoir des informations précises sur le trafic et les feux de circulation.
Fichier principal
Vignette du fichier
122326_LAKSHMANAN_2023_archivage.pdf (5.45 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04536608 , version 1 (08-04-2024)

Identifiants

  • HAL Id : tel-04536608 , version 1

Citer

Vinith Kumar Lakshmanan. Cooperative control of eco-driving trajectories for a fleet of electric connected and autonomous vehicles. Automatic Control Engineering. Université Paris-Saclay, 2023. English. ⟨NNT : 2023UPAST068⟩. ⟨tel-04536608⟩

Collections

IFP STAR TDS-MACS
39 Consultations
7 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More