Scaling Deep Reinforcement Learning for the Optimization of Building Control and Management - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Scaling Deep Reinforcement Learning for the Optimization of Building Control and Management

Apprentissage par Renforcement Profond pour l'Optimisation du Contrôle et de la Gestion des Bâtiment

Khoder Jneid
  • Fonction : Auteur
  • PersonId : 1376909
  • IdRef : 277209641

Résumé

Heating, ventilation, and air-conditioning (HVAC) systems account for high energy consumption in buildings. Conventional approaches used to control HVAC systems rely on rule-based control (RBC) that consists of predefined rules set by an expert. Model-predictive control (MPC), widely explored in literature, is not adopted in the industry since it is a model-based approach that requires to build models of the building at the first stage to be used in the optimization phase and thus is time-consuming and expensive. During the PhD, we investigate reinforcement learning (RL) to optimize the energy consumption of HVAC systems while maintaining good thermal comfort and good air quality. Specifically, we focus on model-free RL algorithms that learn through interaction with the environment (building including the HVAC) and thus not requiring to have accurate models of the environment. In addition, online approaches are considered. The main challenge of an online model-free RL is the number of days that are necessary for the algorithm to acquire enough data and actions feedback to start acting properly. Hence, the research subject of the PhD is boosting model-free RL algorithms to converge faster to make them applicable in real-world applications, HVAC control. Two approaches have been explored during the PhD to achieve our objective: the first approach combines RBC with value-based RL, and the second approach combines fuzzy rules with policy-based RL. Both approaches aim to boost the convergence of RL by guiding the RL policy but they are completely different. The first approach exploits RBC rules during training while in the second approach, the fuzzy rules are injected directly into the policy. Tests areperformed on a simulated office during winter. This simulated office is a replica of a real office at Grenoble INP.
Les systèmes de chauffage, de ventilation et de climatisation (CVC) consomment une quantité important d'énergie dans les bâtiments. Les approches conventionnelles utilisées pour contrôler les systèmes CVC reposent sur un contrôle basé sur des règles (RBC) qui consiste en des règles prédéfinies établies par un expert. Le contrôle prédictif par modèle (MPC), largement exploré dans la littérature, n'est pas adopté par l'industrie car il s'agit d'une approche basée sur un modèle qui nécessite de construire au préalable des modèles du bâtiment qui sont utilisés dans la phase d'optimisation. Cette construction initiale de modèle est coûteuse et il est difficile de maintenir ces modèles au cours de la vie du bâtiment. Au cours de la thèse, nous étudions l'apprentissage par renforcement (RL) pour optimiser la consommation d'énergie des systèmes CVC tout en maintenant un bon confort thermique et une bonne qualité de l'air. Plus précisément, nous nous concentrons sur les algorithmes d'apprentissage par renforcement sans modèle qui apprennent en interagissant avec l'environnement (le bâtiment, y compris le système CVC) et qui ne nécessitent donc pas de modèles précis de celui-ci. En outre, les approches en ligne sont prises en compte. Le principal défi d'un RL sans modèle en ligne est le nombre de jours nécessaires à l'algorithme pour acquérir suffisamment de données et de retours d'actions pour commencer à agir correctement. L'objectif de cette thèse est d'accélérer l'apprentissage les algorithmes RL sans modèle pour converger plus rapidement afin de les rendre applicables dans les applications du monde réel, le contrôle du chauffage, de la ventilation et de la climatisation. Deux approches ont été explorées au cours de la thèse pour atteindre notre objectif : la première approche combine la RBC avec la RL basé sur la valeur, et la seconde approche combine les règles floues avec le RL basé sur la politique. La première approche exploite les règles RBC pendant l'apprentissage, tandis que dans la seconde, les règles floues sont injectées directement dans la politique. Les tests sont effectués sur un bureau simulé, réplique d'un bureau réeel dans le bâtiment de Grenoble INP pendant la période hivernale.
Fichier principal
Vignette du fichier
JNEID_2023_archivage.pdf (4.04 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04552935 , version 1 (19-04-2024)

Identifiants

  • HAL Id : tel-04552935 , version 1

Citer

Khoder Jneid. Scaling Deep Reinforcement Learning for the Optimization of Building Control and Management. Machine Learning [cs.LG]. Université Grenoble Alpes [2020-..], 2023. English. ⟨NNT : 2023GRALM062⟩. ⟨tel-04552935⟩
0 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More