Polydispersity in Granular Flows : Exploring Effects in Dry and Submerged Environments - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Polydispersity in Granular Flows : Exploring Effects in Dry and Submerged Environments

Polydispersité dans les écoulements granulaires : exploration des effets dans des environnements secs et submergés

Résumé

Granular flows are complex and evolving systems where grains interact with each other and, if immersed, interact with an ambient fluid. These flows occur at different velocities and state variables, and could behave like solids, liquids or even gases. Granular flows are involved in many circumstances and scales, from geophysical mass flows such as landslides, debris flows, pyroclastic flows, and snow avalanches, to industrial processes like pharmaceuticals, food production, and construction. For simplicity, granular flows are commonly studied with a monodisperse distribution of grains (e.i., grains with nearly the same size); however, among these flows, the grains involved in these processes have different sizes, a property termed as polydispersity.This thesis focuses on the study of granular flows and, specifically, on the influence that polydispersity has on granular flows. We explore the effect that polydispersity has on steady flows with low inertia, where granular materials can be considered as solids, and high inertia, where granular materials can be considered as fluids. Additionally, we study dry and immersed granular flows in the granular column collapse configuration, that is a benchmark geometry for studying granular flows with phases of acceleration and deceleration.We study granular flows by means of experimental and numerical methods. The numerical simulations of granular flows are done with discrete element methods (DEM) and, for immersed cases, we use a coupled finite element method (FEM) with DEM. We also conduct a controlled experimental campaign in the triaxial test apparatus where we systematically vary the polydispersity level, aiming to study the strength of polydisperse granular materials in quasi-static conditions. Furthermore, we do the physical modelling of immersed and dry gravity-driven flows in the granular column collapse configuration. Our goal is to explore the influence of polydispersity on granular flows and to identify the influence of the basal fluid pressure on the mobility of granular flows. For the experiments, we use spherical beads, exclusively focusing on the effect that size polydispersity has on granular flows.Our results allow us to conclude that the shear strength of granular materials is independent of the size polydispersity from a quasistatic condition to a condition of high inertia. For very large inertial conditions, the shear strength of polydisperse materials is smaller compared to that of monodisperse materials. We found that this difference arises from distinct variations in geometric and force parameters belonging to the contact and force network. Additionally, we provide evidence that immersed granular flows are strongly influenced by an increase in polydispersity levels. We show that the difference between monodisperse and polydisperse materials essentially arises from different evolutions of the basal fluid pressure. The initiation of polydisperse flows is delayed compared to monodisperse flows, due to a sustained negative fluid pressure change with large amplitude. Then, as the flow deposits, polydisperse systems reach longer runout distances due to the generation of exceeding pore pressure that lasts longer than the exceeding pore pressure provoked by monodisperse systems. Finally, we propose a model that links flow kinetic energy with the mobility of granular flows, which applies to different polydispersity levels, and has been successfully validated through simulations and experiments. The results of this thesis provide new insights into the role of polydispersity in both dry and immersed granular flows.
Les écoulements granulaires sont des systèmes complexes et évolutifs dans lesquels les grains interagissent entre eux et, s'ils sont immergés, avec un fluide. Ces écoulements se produisent à différentes vitesses et contraintes, et peuvent se comporter comme des solides, des liquides ou même des gaz. Les écoulements granulaires sont impliqués dans de nombreux phénomènes et à de nombreuses échelles, depuis les écoulements de masse géophysiques tels que les glissements de terrain, les écoulements pyroclastiques et les avalanches de neige, jusqu'aux processus industriels tels que les produits pharmaceutiques, la production alimentaire et la construction. Par souci de simplicité, les écoulements granulaires sont généralement étudiés avec une distribution monodisperse de grains. Cependant, parmi ces écoulements, les grains impliqués dans ces processus ont des tailles différentes, une propriété appelée polydispersité.Cette thèse se concentre sur l'étude des écoulements granulaires et sur l'influence de la polydispersité sur les écoulements granulaires. Nous explorons l'effet de la polydispersité sur les écoulements à faible inertie et à forte inertie. En outre, nous étudions les écoulements granulaires secs et immergés dans la configuration d'effondrement de la colonne granulaire.Nous étudions les écoulements granulaires avec de méthodes expérimentales et numériques. Les simulations numériques des écoulements granulaires sont réalisées à l'aide de méthodes d'éléments discrets (DEM) et, pour les cas immergés, nous utilisons une méthode d'éléments finis couplée à des DEM. Nous menons également une campagne expérimentale dans l'appareil d'essai triaxial où nous faisons varier le niveau de polydispersité, dans le but d'étudier la résistance des matériaux granulaires polydispersés dans des conditions quasi-statiques. En outre, nous procédons à la modélisation physique des écoulements gravitaires immergés et secs dans la colonne granulaire. Notre objectif est d'explorer l'influence de la polydispersité sur les écoulements et d'identifier l'influence de la pression du fluide sur la mobilité. Pour les expériences, nous utilisons des grains sphériques, en nous concentrant exclusivement sur l'effet de la polydispersité sur les écoulements granulaires.Nos résultats nous permettent de conclure que la résistance au cisaillement des matériaux granulaires est indépendante de la polydispersité, depuis une condition quasistatique jusqu'à une condition de forte inertie. Pour des conditions d'inertie très importantes, la résistance au cisaillement des matériaux polydispersés est plus faible que celle des matériaux monodispersés. Nous avons constaté que cette différence provient de variations distinctes des paramètres géométriques et de force appartenant au réseau de contact et de force. En outre, nous démontrons que les écoulements granulaires immergés sont fortement influencés par une augmentation des niveaux de polydispersité. Nous montrons que la différence entre les matériaux monodispersés et polydispersés provient essentiellement de différentes évolutions de la pression de base du fluide. L'initiation des écoulements polydisperses est retardée par rapport aux écoulements monodisperses, en raison d'une variation négative soutenue de la pression du fluide avec une grande amplitude. Ensuite, lorsque l'écoulement se dépose, les systèmes polydisperses atteignent des distances plus longues en raison de la génération d'une pression interstitielle excédentaire qui dure plus longtemps que la pression interstitielle excédentaire provoquée par les systèmes monodisperses. Enfin, nous proposons un modèle qui relie l'énergie cinétique à la mobilité des écoulements granulaires, qui s'applique à différents niveaux de polydispersité et qui a été validé avec succès par des simulations et des expériences. Les résultats de cette thèse apportent de nouvelles connaissances sur le rôle de la polydispersité dans les écoulements granulaires secs et immergés.
Fichier principal
Vignette du fichier
POLONIA_2023_archivage.pdf (25.41 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04587256 , version 1 (24-05-2024)

Identifiants

  • HAL Id : tel-04587256 , version 1

Citer

Oscar Polania. Polydispersity in Granular Flows : Exploring Effects in Dry and Submerged Environments. Fluid mechanics [physics.class-ph]. Université de Montpellier; Universidad de los Andes (Bogotá), 2023. English. ⟨NNT : 2023UMONS061⟩. ⟨tel-04587256⟩
37 Consultations
4 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More