Experimental insight of gas-particle flows in the context of a pyroclastic fountain
Étude expérimentale des écoulements gaz-particules en contexte de fontaine pyroclastique
Résumé
Pyroclastic columns form during explosive volcanic eruptions in which a mixture of gases and particles is ejected at high speed from a vent and can lead to the formation of convective plumes. The stability of these columns depends on various parameters that can vary over time and cause partial or total collapse of the pyroclastic mixture. These collapses give rise to eruptive fountains, forming density currents called pyroclastic density currents (PDCs). The objective of this thesis is twofold: to study (1) the mechanisms of particle sedimentation in the plume and the dilute part of PDCs, and (2) the mechanisms of PDC emergence in the impact zones of the fountains. The chosen method is the experimental approach.A first series of experiments involves suspending particles ranging in size from 49 to 467.5 µm in a cylindrical device and measuring the local particle concentration for each mixture. For this purpose, two independent approaches were used and provided similar results: an acoustic method and the use of pressure sensors. These experiments highlight two mechanisms of particle sedimentation: enhanced sedimentation and delayed sedimentation. In suspensions of small particles (78 µm), the sedimentation rate increases with the local particle concentration due to the formation of « clusters » that fall at a speed four times higher than the terminal settling velocity of individual particles (enhanced sedimentation). However, in suspensions of larger particles (467.5 µm), the sedimentation rate decreases with increasing particle concentration, despite the presence of « clusters » and it is 30 % lower than the settling speed of individual particles (delayed sedimentation). These results suggest that the sedimentation mechanisms in the presence of « clusters » occurring in plumes or the dilute part of PDC should be considered in models used to simulate these volcanic phenomena to better predict deposit characteristics.A second series of experiments simulates a pyroclastic fountain by releasing particles of sizes ranging from 29 and 269 µm into a channel at a height of 3.27 meters. The results show that dilute mixtures (1.6 - 4.4 vol.%) in free fall accumulate in the impact zone to form concentrated granular flows (~ 45 - 48 vol.%) whose interstitial fluid pressure nearly compensates for the weight of particles for sizes < 76 µm. Furthermore, the maximum fluid pressure measured at the impact, the flow travel distance, and the horizontal stretching of deposits increase with decreasing particle size. Considering the experiment dimensions, these results indicate that a high interstitial fluid pressure can be generated in the impact zone of collapsing pyroclastic fountains. The small particle size, causing low permeability and a long pressure diffusion time, may be one of the main factors leading to the long runout distances covered by the flows.
Les colonnes pyroclastiques se forment lors d'éruptions volcaniques explosives au cours desquelles un mélange de gaz et de particules est éjecté à grande vitesse depuis un évent et peut conduire à la formation de panaches convectifs. La stabilité de ces colonnes dépend de divers paramètres qui peuvent varier au cours du temps et causer l'effondrement partiel ou total du mélange pyroclastique. Ces effondrements donnent naissance à des fontaines éruptives à l'origine de courants de densité pyroclastiques (CDPs). L'objectif de cette thèse est double : étudier (1) les mécanismes de sédimentation des particules dans le panache et la partie diluée des CDPs et (2) les mécanismes d'émergence des CDPs dans les zones d'impacts des fontaines. La méthode choisie est l'approche expérimentale.Une première série d'expériences consiste à mettre en suspension des particules de taille variant de 49 à 467,5 µm dans un dispositif cylindrique et à mesurer la concentration locale de particules de chaque mélange. Pour cela, deux approches indépendantes ont été utilisées et ont donné des résultats similaires : une méthode acoustique et l'utilisation des capteurs de pression. Ces expériences mettent en lumière deux mécanismes de sédimentation des particules : la sédimentation améliorée et la sédimentation retardée. Dans les suspensions de petites particules (78 µm), la vitesse de sédimentation augmente avec la concentration locale de particules en raison de la formation de « clusters » qui chutent à une vitesse quatre fois supérieure à la vitesse terminale de sédimentation des particules individuelles (sédimentation améliorée). En revanche, dans les suspensions de plus grandes particules (467,5 µm), la vitesse de sédimentation diminue avec l'augmentation de la concentration de particules malgré la présence de « clusters » et elle est 30 % inférieure à la vitesse de chutes des particules individuelles (sédimentation retardée). Ces résultats suggèrent que les mécanismes de sédimentation en présence de « clusters » et se produisant dans les panaches où la partie diluée des courants de densité pyroclastiques devraient être pris en compte dans les modèles utilisés pour simuler ces phénomènes volcaniques afin de mieux prédire les caractéristiques des dépôts.Une seconde série d'expériences consiste à simuler une fontaine pyroclastique en relâchant dans un chenal des particules de tailles comprises entre 29 et 269 µm et à une hauteur de 3,27 m. Les résultats montrent que les mélanges dilués (1,6 - 4,4 vol.%) en chute libre s'accumulent dans la zone d'impact pour former des écoulements granulaires concentrés (~ 45 - 48 vol.%) dont la pression de fluide interstitiel compense presque totalement le poids des particules pour des tailles < 76 µm. De plus, la pression de fluide maximale mesurée à l'impact, la distance de parcours des écoulements et l'étirement horizontal des dépôts augmentent avec la diminution de taille des particules. En considérant le dimensionnement des expériences, ces résultats indiquent qu'une pression de fluide interstitielle élevée dans les courants de densité pyroclastiques concentrés peut être générée dans la zone d'impact des fontaines pyroclastiques en effondrement. La petite taille des particules, qui cause une faible perméabilité et un long temps de diffusion de la pression de pore, peut être l'un des facteurs principaux qui causent les longues distances parcourues par les écoulements.
Domaines
VolcanologieOrigine | Version validée par le jury (STAR) |
---|