Learning of semantic information representations, adapted to Natural Language Processing and Information Search, from texts and formal knowledge bases in the field
Apprentissage de représentation de graphes de connaissances et enrichissement de modèles de langue pré-entraînés par les graphes de connaissances : approches basées sur les modèles de distillation
Résumé
Natural language processing (NLP) is a rapidly growing field focusing on developing algorithms and systems to understand and manipulate natural language data. The ability to effectively process and analyze natural language data has become increasingly important in recent years as the volume of textual data generated by individuals, organizations, and society as a whole continues to grow significantly. One of the main challenges in NLP is the ability to represent and process knowledge about the world. Knowledge graphs are structures that encode information about entities and the relationships between them, they are a powerful tool that allows to represent knowledge in a structured and formalized way, and provide a holistic understanding of the underlying concepts and their relationships. The ability to learn knowledge graph representations has the potential to transform NLP and other domains that rely on large amounts of structured data. The work conducted in this thesis aims to explore the concept of knowledge distillation and, more specifically, mutual learning for learning distinct and complementary space representations. Our first contribution is proposing a new framework for learning entities and relations on multiple knowledge bases called KD-MKB. The key objective of multi-graph representation learning is to empower the entity and relation models with different graph contexts that potentially bridge distinct semantic contexts. Our approach is based on the theoretical framework of knowledge distillation and mutual learning. It allows for efficient knowledge transfer between KBs while preserving the relational structure of each knowledge graph. We formalize entity and relation inference between KBs as a distillation loss over posterior probability distributions on aligned knowledge. Grounded on this finding, we propose and formalize a cooperative distillation framework where a set of KB models are jointly learned by using hard labels from their own context and soft labels provided by peers. Our second contribution is a method for incorporating rich entity information from knowledge bases into pre-trained language models (PLM). We propose an original cooperative knowledge distillation framework to align the masked language modeling pre-training task of language models and the link prediction objective of KB embedding models. By leveraging the information encoded in knowledge bases, our proposed approach provides a new direction to improve the ability of PLM-based slot-filling systems to handle entities.
Le traitement du langage naturel (NLP) est un domaine en pleine expansion axé sur le développement d'algorithmes et de systèmes permettant de comprendre et de manipuler les données du langage naturel. La capacité à traiter et à analyser efficacement les données du langage naturel est devenue de plus en plus importante ces dernières années, car le volume de données textuelles générées par les individus, les organisations et la société dans son ensemble continue de croître de façon significative. Les graphes de connaissances sont des structures qui encodent des informations sur les entités et les relations entre elles. Ils constituent un outil puissant qui permet de représenter les connaissances de manière structurée et formalisée, et de fournir une compréhension globale des concepts sous-jacents et de leurs relations. La capacité d'apprendre des représentations de graphes de connaissances a le potentiel de transformer le traitement automatique du langage et d'autres domaines qui reposent sur de grandes quantités de données structurées. Les travaux menés dans cette thèse visent à explorer le concept de distillation des connaissances et, plus particulièrement, l'apprentissage mutuel pour l'apprentissage de représentations d'espace distincts et complémentaires. Notre première contribution est de proposer un nouveau cadre pour l'apprentissage d'entités et de relations sur des bases de connaissances multiples appelé KD-MKB. L'objectif clé de l'apprentissage de représentations multigraphes est d'améliorer les modèles d'entités et de relations avec différents contextes de graphes qui peuvent potentiellement faire le lien entre des contextes sémantiques distincts. Notre approche est basée sur le cadre théorique de la distillation des connaissances et de l'apprentissage mutuel. Elle permet un transfert de connaissances efficace entre les KBs tout en préservant la structure relationnelle de chaque graphe de connaissances. Nous formalisons l'inférence d'entités et de relations entre les bases de connaissances comme un objectif de distillation sur les distributions de probabilité postérieures à partir des connaissances alignées. Sur la base de ces résultats, nous proposons et formalisons un cadre de distillation coopératif dans lequel un ensemble de modèles de KB sont appris conjointement en utilisant les connaissances de leur propre contexte et les softs labels fournies par leurs pairs. Notre deuxième contribution est une méthode permettant d'incorporer des informations riches sur les entités provenant de bases de connaissances dans des modèles de langage pré-entraînés (PLM). Nous proposons un cadre original de distillation coopératif des connaissances pour aligner la tâche de pré-entraînement de modèles de langage masqués et l'objectif de prédiction de liens des modèles de représentation de KB. En exploitant les informations encodées dans les bases de connaissances et les modèles de langage pré-entraînés, notre approche offre une nouvelle direction de recherche pour améliorer la capacité à traiter les entités des systèmes de slot filling basés sur les PLMs.
Origine | Version validée par le jury (STAR) |
---|