Synthesis of Metal-semiconductor Heterostructures by Laser Photodeposition
Synthèse d'hétérostructures métal-semiconducteur par photodéposition laser
Résumé
Cuvette setup with UV and blue laser as light sources are built to perform photodeposition of metals nanodots (NDs) onto TiO2 nanoparticles (NPs) and Janus-typed Cu2-xS-CuInS2 nano-heterostructures in aqueous and organic solution respectively. Three different metal NDs, i.e., Au, Ag, Pd, are introduced on the surface of TiO2 NPs, and Au NDs are deposited on Cu2-xS/CuInS2. Several techniques, including TEM/HRTEM, EDS mapping, and UV-vis spectroscopy, are performed to characterize the size, morphology, and distribution of the metal NDs. Au-TiO2 nanoheterodimers (NHDs)are successfully synthesized and a close to 100% yield of Au-TiO2 NHDs is achieved by managing the concentration of TiO2 NPs and gold precursor.Especially, the adsorption mechanism of methanol and gold precursor on TiO2 during photodeposition is investigated. By comparing the experimental data obtained in microchannels and cuvette setups, the established model describes the overall dynamic process of Au ND growth on TiO2 from 1/3 growth state to completion. The final size of Au NDs can be accurately predicted by the model in particular the growth completion. In addition, other metal Ag and Pd NPs were deposited on the surface of TiO2, and Ag-TiO2 and Pd-TiO2 NHDs are also synthesized. The effects of the hole scavenger,laser power, and exposure time on the size, and distribution of metal NDs are investigated. Moreover, the growths of Ag and Pd NDs both follow the proposed model for Au growth. The project is extended to bimetallic core-shell NDs photodeposition and Au, Ag and Pd are introduced on Au-TiO2 NHDs by a second step photodeposition, forming a core-shell structure on the surface of TiO2 NPs. For the Au@Au core@shell, the Au shell can be precisely controlled by varying the gold precursor concentration and the size and thickness of the Au core and shell pretty much fit our expectations.For the Au@Ag system, the Ag shell obtained is limited to around 1 nm thickness which results from the low electronegativity of Ag (1.9) compared to other Au (2.4). For the Au@Pd system, Pd shows a non-isotropic growth on the Au core resulting in a nonuniform Pd shell due to the big lattice mismatch between Au and Pd. Finally, Au NDs are introduced onto Cu2-xS/CuInS2 heteronanorods by photodeposition in toluene with a blue laser.The nucleation and growth of Au NDs are studied and the geometric distribution (e.g., number and location) of Au NDs, as well as their sizes, can be well controlled by tuning laser power, exposure time, hole scavengers, and precursors concentration.
Un montage utilisant des cuvettes et des lasers UV et bleu comme sources de lumière a été construit pour effectuer la photodéposition de nanodots métalliques (NDs) sur des nanoparticules (NPs) de TiO2 et des nano-hétérostructures de type Janus de Cu2-xS-CuInS2 en solution aqueuse et organique respectivement. Trois types de NDs métalliques différents, à savoir Au, Ag, Pd, sont introduits en surface des NPs de TiO2, et des NDs d'Au sont déposés sur Cu2-xS-CuInS2. Plusieurs techniques, dont le TEM/HRTEM, la cartographie EDS et la spectroscopie UV-vis, sont utilisées pour caractériser la taille, la morphologie et la distribution des NDs métalliques. Les nanohétérodimères (NHDs) Au-TiO2 sont synthétisés avec succès ; un rendement de NHDs Au-TiO2 proche de 100% est obtenu en gérant la concentration des NPs TiO2 et du précurseur d'or. En particulier, le mécanisme d'adsorption du méthanol et du précurseur d'or sur le TiO2 pendant la photodéposition est étudié. En comparant les données expérimentales obtenues dans des microcanaux et des cuvettes, le modèle établi décrit le processus dynamique global de la croissance des NDs d'Au sur le TiO2, de la loi de croissance en t 1/3 à l'achèvement. La taille finale des NDs d’Au peut être prédite avec précision par le modèle, en particulier la fin de la croissance. De plus, des NPs d'Ag et de Pd d'autres métaux ont été déposées sur la surface de TiO2, et des NHDs d'Ag-TiO2 et de Pd-TiO2 ont également été synthétisés. Les effets du piégeur de trous, de la puissance du laser et du temps d'exposition sur la taille et la distribution des NDs métalliques sont étudiés. De plus, la croissance des NDs d'Ag et de Pd suit le modèle proposé pour la croissance de l'Au. Le projet est étendu à la photodéposition de NDs bimétalliques cœur-coquille où Au, Ag et Pd sont introduits sur des NHDs Au-TiO2 par une seconde étape de photodéposition, formant une structure cœur-coquille à la surface des NPs TiO2. Pour le système Au@Au core@shell, la coquille d'Au peut être contrôlée avec précision en faisant varier la concentration du précurseur d'or ; la taille et l'épaisseur du cœur et de la coquille d'Au correspondent à nos attentes. Pour le système Au@Ag, la coquille d'Ag obtenue est limitée à environ 1 nm d'épaisseur, ce qui résulte de la faible électronégativité de l'Ag (1,9) par rapport à l'Au (2,4). Pour le système Au@Pd, le Pd présente une croissance non isotrope sur le cœur d'Au, ce qui entraîne une coquille de Pd non uniforme en raison de l'important décalage de réseau entre Au et Pd. Enfin, des NDs d'Au sont introduits sur des hétéro-nanorods de Cu2-xS-CuInS2 par photodéposition dans le toluène avec un laser bleu. La nucléation et la croissance des Au NDs sont étudiées et la distribution géométrique (i.e., le nombre et la distribution) des Au NDs, ainsi que leurs tailles en réglant la puissance du laser, le temps d'exposition, les piégeurs de trous et la concentration des précurseurs.
Origine | Version validée par le jury (STAR) |
---|