High-dimensional variable selection procedures in non-linear mixed effects models. Application in plant breeding
Procédures de sélection de variables en grande dimension dans les modèles non-linéaires à effets mixtes. Application en amélioration des plantes
Résumé
Mixed-effects models analyze observations collected repeatedly from several individuals, attributing variability to different sources (intra-individual, inter-individual, residual). Accounting for this variability is essential to characterize the underlying biological mechanisms without biais. These models use covariates and random effects to describe variability among individuals: covariates explain differences due to observed characteristics, while random effects represent the variability not attributable to measured covariates. In high-dimensional context, where the number of covariates exceeds the number of individuals, identifying influential covariates is challenging, as selection focuses on latent variables in the model. Many procedures have been developed for linear mixed-effects models, but contributions for non-linear models are rare and lack theoretical foundations. This thesis aims to develop a high-dimensional covariate selection procedure for non-linear mixed-effects models by studying their practical implementations and theoretical properties. This procedure is based on the use of a gaussian spike-and-slab prior and the SAEM algorithm (Stochastic Approximation of Expectation Maximisation Algorithm). Posterior contraction rates around true parameter values in a non-linear mixed-effects model under a discrete spike-and-slab prior have been obtained, comparable to those observed in linear models. The work in this thesis is motivated by practical questions in plant breeding, where these models describe plant development as a function of their genotypes and environmental conditions. The considered covariates are generally numerous since varieties are characterized by thousands of genetic markers, most of which have no effect on certain phenotypic traits. The statistical method developed in the thesis is applied to a real dataset related to this application.
Les modèles à effets mixtes analysent des observations collectées de façon répétée sur plusieurs individus, attribuant la variabilité à différentes sources (intra-individuelle, inter-individuelle, résiduelle). Prendre en compte cette variabilité est essentiel pour caractériser sans biais les mécanismes biologiques sous-jacents. Ces modèles utilisent des covariables et des effets aléatoires pour décrire la variabilité entre individus : les covariables décrivent les différences dues à des caractéristiques observées, tandis que les effets aléatoires représentent la variabilité non attribuable aux covariables mesurées. Dans un contexte de grande dimension, où le nombre de covariables dépasse celui des individus, identifier les covariables influentes est difficile, car la sélection porte sur des variables latentes du modèle. De nombreuses procédures ont été mises au point pour les modèles linéaires à effets mixtes, mais les contributions pour les modèles non-linéaires sont rares et manquent de fondements théoriques. Cette thèse vise à développer une procédure de sélection de covariables en grande dimension pour les modèles non-linéaires à effets mixtes, en étudiant leurs implémentations pratiques et leurs propriétés théoriques. Cette procédure est basée sur l'utilisation d'un prior spike-and-slab gaussien et de l'algorithme SAEM (Stochastic Approximation of Expectation Maximisation Algorithm). Des taux de contraction a posteriori autour des vraies valeurs des paramètres dans un modèle non-linéaire à effets mixtes sous prior spike-and-slab discret ont été obtenus, comparables à ceux observés dans des modèles linéaires. Les travaux conduits dans cette thèse sont motivés par des questions appliquées en amélioration des plantes, où ces modèles décrivent le développement des plantes en fonction de leurs génotypes et des conditions environnementales. Les covariables considérées sont généralement nombreuses puisque les variétés sont caractérisées par des milliers de marqueurs génétiques, dont la plupart n'ont aucun effet sur certains traits phénotypiques. La méthode statistique développée dans la thèse est appliquée à un jeu de données réel relatif à cette application.
Origine | Version validée par le jury (STAR) |
---|