Regulation of cyclic and pseudocyclic electron transport
Régulation du transport cyclique et pseudocyclique des électrons
Résumé
Photosynthesis acts as the main gateway for energy production in natural environments and relies on the electron flow via several complexes in the thylakoid membrane of photosynthetic organisms. The major flux is “linear” electron transport, which involves the transfer of electrons from water to NADP⁺, coupled with the ATP synthesis. Photosynthetic water oxidation is catalyzed by manganese cluster (Mn₄CaO₅) at photosystem II (PSII). To ensure an optimal balance between the amount of energy produced and consumed, photosynthetic organisms divert part of the harvested light energy from “linear” to “alternative” electron transport pathways. Among those pathways are cyclic and pseudocyclic electron transport around Photosystem I (PSI), which supplies extra ATP to meet metabolic demands. Moreover, specialized redox systems, called " thioredoxins " are responsible for maintaining the redox status and fast acclimation of plants to constantly fluctuating environments, which could otherwise lead to toxic levels of reactive oxygen species (ROS) production. We studied the effects of manganese (Mn) excess and deficiency on photosynthetic electron transport in the liverwort Marchantia polymorpha. We have shown that Mn homeostasis has an effect at both metabolic and photosynthetic levels. Moreover, we have studied the in vivo redox changes of P700 and PC using KLAS-NIR spectrophotometer and have shown that Mn deficiency seems to enhance cyclic electron transport (CET), that may indicate the presence of supercomplexes containing PSI and cytochrome b6f complex. The second part of this PhD focused on the redox regulation of oxygen reduction (pseudocyclic electron transport) at the PSI acceptor side. By using indirect spin trapping EPR spectroscopy, we have shown that Arabidopsis thaliana wild type plants generate more ROS in short day (SD) photoperiod than in long day (LD) photoperiod. Further, the current study highlighted the role of several players in redox regulation; including thioredoxins and several other lumenal and stromal proteins. Moreover, I explored that the transfer of reducing powers from stroma to lumen is mediated by a protein called CCDA and that reversible attachment of Trxm to the thylakoid membrane acts as the driving force for higher ROS under the SD light regime. Overall, this research establishes a strong connection between cyclic and pseudocyclic electron transport in terms of thioredoxins mediated redox regulations and also paves the way to further explore CET under different stress conditions.
La photosynthèse, principale voie de production d'énergie dans les environnements naturels, repose sur des flux d'électrons intervenant dans plusieurs complexes dans la membrane des thylakoïdes des organismes photosynthétiques. Le flux principal est le transport « linéaire » des électrons qui implique leur transfert de l'eau au NADP⁺, le tout couplé à la synthèse d'ATP. L'oxydation de l'eau photosynthétique est catalysée par les clusters de manganèse (Mn₄CaO₅) au niveau du photosystème II (PSII). Pour assurer un équilibre optimal entre la quantité d'énergie produite et consommée, les organismes photosynthétiques détournent une partie de l'énergie lumineuse récoltée des voies de transport d'électrons "linéaires" vers des voies "alternatives". Parmi ces voies, on trouve les transports cyclique et pseudocyclique des électrons autour du photosystème I (PSI), qui fournit de l'ATP supplémentaire pour répondre aux besoins métaboliques. En outre, des systèmes redox spécialisés appelés "thiorédoxines" sont responsables du maintien de l'état redox et de l'acclimatation rapide des plantes à un environnement changeant. Dans le cas contraire, cela peut conduire à des niveaux toxiques d'espèces réactives de l'oxygène (ROS) dans les cellules. Nous avons étudié les effets de l'excès et de la carence en manganèse (Mn) sur le transport des électrons au cours de la photosynthèse chez l'hépatique Marchantia polymorpha. Nous avons montré que l'homéostasie du Mn a un effet sur le métabolisme mais aussi sur la photosynthèse. De plus, nous avons étudié les changements redox in vivo du P700 et du la plastocyanine (PC) en utilisant le spectrophotomètre KLAS-NIR. Il semble que la carence en Mn permet une augmentation du transport cyclique des électrons (TCE) ce qui indique la présence de supercomplexes contenant le PSI et le complexe du cytochrome b6f. Dans un second temps, nous nous sommes concentrées sur la régulation redox de la réduction de l'oxygène (transport d'électrons pseudocyclique) du côté de l'accepteur du PSI. En utilisant la spectroscopie RPE par piégeage indirect de spin, nous avons montré que des plantes sauvages d'Arabidopsis thaliana génèrent plus de ROS en photopériode de jour court (JC) qu'en photopériode de jour long (JL). En outre, nous avons mis en évidence le rôle de plusieurs acteurs, y compris les thiorédoxines et plusieurs protéines du lumen et du stroma dans la régulation redox. De plus, j'ai découvert que le transfert du pouvoir réducteur du stroma au lumen est médié par une protéine appelée CCDA. Par ailleurs, l'attachement réversible de Trxm à la membrane des thylakoïdes agit comme une force motrice pour l’accumulation des ROS en JC. Dans l'ensemble, les résultats établissent un lien étroit entre le transport cyclique et pseudocyclique des électrons en termes de régulations redox médiées par les thiorédoxines. Une voie est également ouverte quant à une exploration plus approfondie du TCE dans différentes conditions de stress.
Origine | Version validée par le jury (STAR) |
---|