Borosilicate glasses : from viscoplasticity to indentation cracking ? - TEL - Thèses en ligne
Thèse Année : 2024

Borosilicate glasses : from viscoplasticity to indentation cracking ?

Dépendance de la vitesse de déformation et de la composition des verres silicatés sur leurs mécanismes de plasticité

Résumé

Understanding the mechanisms of glass fracture is crucial due to the extensive industrial applications of these materials, where the control of their mechanical properties is key to ensuring performance and durability. In-depth examination of plasticity mechanisms under indentation in aluminoborosilicate glasses has highlighted the critical role of chemical composition in mechanical behavior and crack resistance. It has been observed that the presence and relative concentration of network modifiers, such as alkaline earth oxides, or a higher concentration of boron as a network former, significantly influence localized plastic flow in the form of shear bands, as well as the resistance to crack initiation and propagation. This suggests that precise adjustments in composition can enhance the material's resilience under mechanical stress. Additionally, a series of mechanical and thermal characterizations of these glasses have established correlations between their structure and mechanical behavior under indentation. Furthermore, the study of the effects of electron irradiation on the plasticity of silicate glasses revealed that exposure to electrons can increase these materials' susceptibility to plastic deformation, altering their microscopic structure and mechanical properties. It was found that electron irradiation catalyzes structural rearrangements under stress, leading to a marked decrease in the yield stress of silicate glasses. These changes were analyzed through advanced relaxation and deformation models, allowing for the quantification and prediction of irradiation's impact on glass behavior. This work advances the understanding of plasticity processes in glasses and paves the way for strategies to optimize their mechanical properties, particularly by designing specific compositions to enhance their resistance in demanding industrial environments or under severe conditions.
Comprendre les mécanismes de rupture des verres est d'une importance cruciale en raison des vastes applications industrielles de ces matériaux, où la maîtrise de leurs propriétés mécaniques détermine leur performance et leur durabilité. L'examen approfondi des mécanismes de plasticité sous indentation dans les verres aluminoborosilicatés a mis en évidence le rôle déterminant de la composition chimique sur le comportement mécanique et à la rupture. Il est apparu que la présence et la concentration relative de modificateurs de réseau tels que les oxydes alcalino-terreux, ou bien une plus grande concentration de bore en tant que formateur de réseau, influencent significativement l'écoulement plastique localisé sous forme de bandes de cisaillement ainsi que la résistance à l'initiation et à la propagation des fissures, suggérant que des ajustements précis de la composition peuvent améliorer la résistance de ces matériaux face aux sollicitations mécaniques. D'autre part, un ensemble de caractérisations mécaniques et thermiques de ces verres a permis d'établir des premières corrélations entre leur structure et leur comportement mécanique sous indentation. Par ailleurs, l'étude de l'effet de l'irradiation électronique sur la plasticité des verres silicatés a révélé que l'exposition aux électrons peut accroître la sensibilité de ces matériaux à la déformation plastique, modifiant leur structure microscopique et leurs propriétés mécaniques. Il s'est avéré que l'irradiation électronique catalyse les réarrangements structuraux, sous contrainte, liés à la plasticité, entraînant une nette diminution de la limite d'élasticité du verre silicaté. Ces modifications ont été analysées à travers des modèles avancés de relaxation et de déformation, permettant de quantifier et de prévoir l'impact de l'irradiation sur le comportement des verres. Ces travaux contribuent à la compréhension des processus de plasticité dans les verres et ouvrent la voie à des stratégies d'optimisation de leurs propriétés mécaniques, notamment en concevant des compositions spécifiques pour renforcer leur résistance dans des environnements industriels exigeants ou soumis à des conditions sévères.
Fichier principal
Vignette du fichier
144247_BOURGUIGNON_2024_archivage.pdf (26.72 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04797848 , version 1 (22-11-2024)

Identifiants

  • HAL Id : tel-04797848 , version 1

Citer

Matthieu Bourguignon. Borosilicate glasses : from viscoplasticity to indentation cracking ?. Material chemistry. Sorbonne Université, 2024. English. ⟨NNT : 2024SORUS247⟩. ⟨tel-04797848⟩
0 Consultations
0 Téléchargements

Partager

More