Application of broadband dielectric spectroscopy under pressure to the study of molecular mobility in amοrphous thermοplastic pοlymers
Appοrt de la spectrοscοpie à relaxatiοn diélectrique sοus pressiοn pοur investiguer la mοbilité mοléculaire dans les pοlymères thermοplastiques amοrphes
Résumé
The ambiguity surrounding the relationship between the glass transition temperature, isobaric fragility, and the characteristic size of the Cooperative Rearranging Regions (CRR) for glass-forming liquids has been resolved by considering the volumetric and thermal contributions of the structural relaxation. These contributions have traditionally been estimated by considering assumptions at atmospheric pressure, whereas they require pressure variations to be measured. The use of broadband dielectric spectroscopy under pressure offers a new perspective to experimentally determine the contributions of isobaric fragility. On the one hand, the measurement is performed for three amorphous thermoplastic polymers: Polylactic acid (PLA), polyethylene glycol terephthalate (PETg) and polyvinyl acetate (PVAc). These polymers show a strong correlation between the activation volume, which leads to the volumetric contribution of isobaric fragility, and the CRR volume. The thermal contribution is determined by two methods and evolves in an opposite manner to the volumetric contribution as function of pressure. The contributions explain the isobaric fragility behavior at atmospheric pressure. On the other hand, the poly(ethylene-co-vinyl acetate) (EVA) copolymer series, which presents a different ratio of polar side groups with an unchanged backbone chain, is analyzed in terms of intermolecular interactions from the dielectric relaxation shape. In this series, the polar side groups play a crucial role in the volumetric and thermal contributions of the isobaric fragility, which are also related to inter and intramolecular interactions. By combining these different results, a relationship between chemical structure and the influence of pressure/temperature on molecular mobility can be established. The effects of structural parameters, such as backbone and side group stiffness or packing efficiency, are highlighted and explain how isobaric fragility is affected.
La relation entre la température de transition vitreuse, la fragilité isobare et la taille caractéristique des régions de réarrangement coopératif (CRR) pour les liquides vitreux est clarifiée en tenant compte des contributions volumétriques et thermiques de la relaxation structurelle. Ces contributions sont habituellement estimées en considérant certaines hypothèses à la pression atmosphérique, alors qu'elles nécessitent de mesurer des variations de grandeurs physiques sous pression. L'utilisation de la spectroscopie à relaxation diélectrique sous pression offre une nouvelle perspective pour déterminer expérimentalement les contributions de la fragilité isobare.D'une part, ces mesures sont effectuées pour trois polymères thermoplastiques amorphes : le polylactide (PLA), le polyéthylène glycol téréphtalate (PETg) et le polyvinyle acétate (PVAc). Ces polymères présentent une forte corrélation entre le volume d'activation, qui conduit à la contribution volumétrique de la fragilité isobare, et le volume CRR. La contribution thermique est déterminée par deux méthodes et évolue de manière opposée à la contribution volumétrique en fonction de la pression. Les contributions expliquent le comportement de fragilité isobare à la pression atmosphérique. D'autre part, la série de copolymères poly(éthylène-co-vinyle acétate) (EVA), présente un rapport différent de groupes latéraux polaires avec une chaîne principale inchangée, est analysée en termes d'interactions intermoléculaires à partir de la forme de relaxation diélectrique. Dans cette série, les groupes latéraux polaires jouent un rôle crucial dans les contributions volumétriques et thermiques de la fragilité isobare, qui sont également liées aux interactions inter et intramoléculaires.En combinant ces différents résultats, il est possible d'établir une relation entre la structure chimique et l'influence de la pression/température sur la mobilité moléculaire. Les effets des paramètres structurels, tels que la rigidité de la chaine principale et des groupes latéraux ou la packing efficiency, sont mis en évidence et expliquent comment ils affectent la fragilité isobare.
Origine | Version validée par le jury (STAR) |
---|