Development of a composite oxide / oxide matrix in barium aluminosilicate and alumina fibers
Élaboration d’un composite oxyde/oxyde à matrice d'aluminosilicate de baryum et fibres d'alumine
Résumé
In the aerospace and defense industry, thermostructural applications require increasingly high-performance materials, combining mechanical strength, refractoriness, and lightness. To meet these demands, all-oxide ceramic matrix composites (OCMC) are considered promising candidates. Among the matrices for these OCMCs, barium aluminosilicate (BAS) stands out due to its advantageous physical properties, particularly as a material for radomes. However, to make this material functional at high temperatures, close to its melting point (1750°C), it is essential to reinforce it with a thermochemically stable material that has an appropriate architecture. Previous theses have successfully mastered the hexagonal phase of BAS. The chemical nature of the reinforcement, which offers the desired stability with BAS, has been identified, and OCMC Al2O3/BAS composites with 1D and 2D fibrous reinforcements have been developed. However, to achieve materials with enhanced properties under severe thermostructural conditions, these OCMCs need to be produced with a "3D" reinforcement architecture. This work focuses on the development of such a composite with a complex (3D) fiber reinforcement architecture and the evaluation of its properties. To achieve this, the research involves studying the sintering of BAS-H to predict its behavior as a matrix, improving its rheological behavior in suspension to facilitate infiltration into the fibrous reinforcement preform, and implementing an impregnation process suitable for 3D reinforcements. Following these studies, the fabrication of OCMC Al2O3/BAS was completed, demonstrating promising characteristics for the intended application.
Dans l’industrie de l’aéronautique et de la défense, les applications thermostructurales nécessitent des matériaux toujours plus performants, alliant résistance mécanique, réfractarité et légèreté. Pour répondre à ces exigences, les matériaux composites à matrice céramique tout oxyde (OCMC) sont prometteurs. Parmi les matrices de ces OCMC, l'aluminosilicate de baryum (BAS) se distingue par ses propriétés physiques intéressantes, notamment en tant que matériau pour radômes. Cependant, pour rendre ce matériau fonctionnel à haute température, proche de sa température de fusion (1750°C), il est essentiel de le renforcer avec un matériau thermochimiquement stable et doté d'une architecture adaptée. Plusieurs thèses antérieures ont permis de maîtriser la phase hexagonale du BAS. La nature chimique du renfort présentant la stabilité souhaitée avec le BAS a été identifiée et des OCMC Al2O3/BAS à renfort fibreux 1D, 2D ont commencé à être élaborés. Toutefois, pour obtenir des matériaux ayant des propriétés accrues pour des conditions thermostructurales sévères, il est nécessaire de réaliser ces OCMC avec une architecture « 3D » du renfort. Le sujet présenté porte sur la réalisation d'un tel composite avec une architecture complexe (3D) du renfort fibreux et sur l'évaluation de ses propriétés. Pour répondre à cet objectif, ces travaux de recherche incluent : l'étude du frittage du BAS-H afin d’anticiper son comportement en tant que matrice, l'amélioration de son comportement rhéologique en suspension afin de favoriser son infiltration dans une préforme de renforts fibreux, et la mise en place d'un procédé d'imprégnation adapté aux renforts 3D. À la suite de ces études, la fabrication d'OCMC Al2O3/BAS a été réalisée, mettant en évidence des caractéristiques prometteuses en lien avec l'application.
Origine | Version validée par le jury (STAR) |
---|