Modélisation du rayonnement thermique par une approche électromagnétique. Rôle des ondes de surface dans le transfert d'énergie aux courtes échelles et dans les forces de Casimir - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2003

Modélisation du rayonnement thermique par une approche électromagnétique. Rôle des ondes de surface dans le transfert d'énergie aux courtes échelles et dans les forces de Casimir

Résumé

Ma thèse a été consacrée à la modélisation du rayonnement thermique, abordée d'un point de vue électromagnétique. Plus précisément, elle s'applique à l'étude de l'excitation thermique d'ondes de surface (plasmon-polaritons ou phonon-polaritons) susceptibles d'exister pour certains matériaux métalliques ou diélectriques. L'originalité de ce travail a consisté à évaluer la contribution de ces ondes de surface à l'émission thermique de matériaux micro- ou nanostructurés (réseaux) ; aux transferts d'énergie par rayonnement dans des systèmes de taille micro- ou nanométrique ; aux forces de Casimir dans la limite électrostatique. Au cours de cette étude, nous avons détaillé le formalisme qui nous a permis d'aborder le rayonnement thermique d'un point de vue électromagnétique. Nous avons pu donner une expression exacte et explicite de la densité d'énergie électromagnétique (due au rayonnement thermique) au-dessus d'une interface plane séparant un milieu quelconque du vide, en explicitant notamment la contribution des ondes évanescentes. Nous avons tenté de définir une quantité qui serait l'analogue, pour les ondes évanescentes, de l'émissivité monochromatique directionnelle. L'expression de la densité d'énergie obtenue montre qu'en champ proche, il est théoriquement possible de déterminer localement la constante diélectrique d'un substrat en mesurant le champ d'émission thermique qu'il "rayonne" en champ proche. Par ailleurs, nous montrons qu'un microscope optique en champ proche, détectant le champ d'émission thermique d'un substrat est l'analogue optique d'un STM (Scanning Tunneling Microscope) pour les électrons. Nous pourrions ainsi mesurer la densité d'états locale du champ électromagnétique. Utilisant le phénomène d'onde de surface dans l'infrarouge pour le SiC, nous avons été capable de dimensionner une source thermique présentant une certaine cohérence spatiale : dans une direction fixée, elle émet préférentiellement à une longueur d'onde et pour une longueur d'onde fixée, elle émet à l'intérieur d'un lobe très étroit angulairement. Les mesures expérimentales confirment avec un excellent accord cette prédiction théorique. Ainsi, la source que nous avons réalisée avec ce réseau de SiC est le premier exemple expérimental de source thermique patiellement cohérente spatialement. Par ailleurs, cette source a un spectre d'émission qui dépend de l'angle d'émission, c'est l'"effet Wolf". Les développements actuels au laboratoire concernent la mise en œuvre expérimentale d'une expérience de mesure d'émissivité infrarouge avec un spectromètre à transformée de Fourier. Nous abordons ensuite le problème du transfert radiatif entre deux milieux semi-infinis séparés par une faible épaisseur de vide, de 10 nm à plusieurs dizaines de microns et montrons que l'approche radiométrique du rayonnement thermique n'est pas valable lorsque les échelles caractéristiques deviennent du même ordre de grandeur que la longueur d'onde du rayonnement. Nous avons montré alors que les ondes de surface (dont nous ne pouvons rendre compte qu'avec une approche électromagnétique), et plus particulièrement les phonon-polaritons de surface dans le cas du SiC, jouent un rôle fondamental dans le transfert d'énergie électromagnétique. Premièrement, celui-ci est (\it quasi) monochromatique et présente un pic très prononcé à la fréquence de résonance du polariton de surface qui donne la contribution majeure au transfert. Une expression asymptotique en champ proche du coefficient de transfert radiatif en fonction de la fréquence est également donnée. Deuxièment, le transfert est amplifié de plusieurs ordres de grandeur à courte distance, l'amplification variant comme l'inverse du carré de la distance séparant les deux milieux. Pour le cas de deux milieux de SiC séparés d'une distance de 10 nm, la contribution du rayonnement à l'échange d'énergie est du même ordre de grandeur que celle de la conduction (pour un gaz dans les conditions normales). Il est donc essentiel de ne pas négliger cette contribution du rayonnement dans ce type de systèmes, comme cela est fait couramment. Une application envisagée de ce transfert radiatif concerne l'effet thermo-photovoltaïque amplifié. Dans une configuration où nous avons considéré une particule sub-longueur d'onde (approximation dipolaire) située au-dessus d'une interface plane, nous avons mis en évidence le même type d'effets, lorsque la particule et la surface supportent des ondes de surface. La particule absorbe ainsi de manière importante autour de deux fréquences bien précises, correspondant aux fréquences de résonance des ondes de surface. La puissance absorbée par la particule augmente de plusieurs ordres de grandeur en champ proche, variant comme l'inverse de la puissance troisième de la distance entre la particule et le substrat. De la même manière, nous avons réalisé une cartographie de la distribution spatiale de la puissance absorbée par unité de volume à l'intérieur du substrat lorsque celui-ci est éclairé par le champ d'émission thermique de la particule. Nous avons montré que dans le cas d'une particule de SiC au-dessus d'un échantillon de SiC, la densité de puissance pouvait atteindre 100 MW/m3. De plus, la puissance déposée est confinée sur une zone dont la taille typique est de l'ordre de la distance entre la particule et le substrat. Une application de ce travail se situe dans le stockage haute-densité sur des matériaux magnétiques ou à transition de phase. Dans le même thème, nous nous sommes intéressés au cas de nanoparticules métalliques enfouies dans une matrice diélectrique. Le but est d'expliquer certains résultats expérimentaux obtenus lorsque ces nanoparticules sont illuminées par des impulsions laser femtosecondes. Le problème est alors d'étudier la dynamique de relaxation électronique en régime basse fluence (variation de la température électronique faible) et haute fluence (variation importante) et notamment l'influence de la taille de la particule. Lors de cette 'étude, nous avons montré que l'introduction phénoménologique d'un mécanisme supplémentaire d'échange d'énergie entre les électrons et la matrice diélectrique permet de rendre compte de comportements observés expérimentalement. Le premier concerne la dépendance du temps de relaxation électronique en fonction de la taille de la particule lorsque nous sommes dans un régime où la température électronique n'est pas trop élevée (< 400 K). Le temps de relaxation diminue alors avec le rayon de la particule, montrant que ce mécanisme supplémentaire est essentiellement surfacique. Nous avons alors appliqué notre modèle dans un régime où les températures électroniques sont plus élevées (> 400 K), correspondant à des expériences où les nanoparticules sont illuminées par des impulsions de forte fluence. Dans ce régime, la prise en compte du mécanisme de surface conduit à deux conclusions : la première est que l'extrapolation des valeurs calculées pour de fortes fluences au régime des faibles fluences montre que le temps de relaxation est relativement indépendant de la taille de la particule ; la seconde est que la variation du temps de relaxation est fortement non linéaire en fonction de la fluence incidente. Enfin, nous avons étudié l'"effet Casimir" en choisissant une méthode de calcul qui nous permet une interprétation physique aisée des résultats. Nous avons alors été capable de tracer le "spectre" de la force de Casimir entre deux milieux semi-infinis de SiC à température nulle. Nous avons montré qu'en champ proche, la contribution majeure (pics dans le spectre) était donnée par les polaritons de surface, notamment celui qui existe dans l'ultraviolet pour le SiC. De plus, la "relation de dispersion" de la force de Casimir montre que cette contribution des ondes de surface couplées peut être elle-même divisée en deux : une contribution due à ce que nous avons appelé des modes "liants", qui sont attractifs et une contribution due à des modes "anti-liants" qui sont répulsifs. Nous avons identifié, pour les ondes évanescentes, dans la formule analytique de la force les termes correspondant à chacun de ces modes.
Fichier principal
Vignette du fichier
tel-00008907.pdf (5.77 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00008907 , version 1 (30-03-2005)

Identifiants

  • HAL Id : tel-00008907 , version 1

Citer

Jean-Philippe Mulet. Modélisation du rayonnement thermique par une approche électromagnétique. Rôle des ondes de surface dans le transfert d'énergie aux courtes échelles et dans les forces de Casimir. Physique Atomique [physics.atom-ph]. Université Paris Sud - Paris XI, 2003. Français. ⟨NNT : ⟩. ⟨tel-00008907⟩
1730 Consultations
1221 Téléchargements

Partager

Gmail Facebook X LinkedIn More