Problèmes inverses pour l'équation de Newton-Einstein pluridimensionnelle - TEL - Thèses en ligne Access content directly
Theses Year : 2007

Inverse problems for the multidimensional
Newton-Einstein equation.

Problèmes inverses pour l'équation de Newton-Einstein pluridimensionnelle

Abstract

We consider the inverse scattering problem and an inverse boundary value problem for the multidimensional Newton-Einstein equation describing the motion of a classical relativistic particle in a static external electromagnetic (or gravitational) field. The nonrelativistic case is also considered. The external field is assumed to be sufficiently regular with sufficient decay at infinity. First we recall (and develop) some results stating the existence and properties of the scattering map. Then we obtain, in particular, the high energies asymptotics of the scattering map, and we show that the external field is uniquely determined (by explicit formulas) from this asymptotics. We finally obtain an uniqueness theorem at fixed energy for the inverse boundary value problem. From this result we deduce, in particular, that at fixed and
sufficiently large energy the scattering map uniquely determines the external field when this one is also assumed to be compactly supported. The results of this Ph. D. Thesis were obtained by developing, in particular, methods of [Gerver-Nadirashvili, 1983] and [R. Novikov, 1999].
Nous étudions le problème de diffusion inverse et un problème inverse de valeurs au bord pour l'équation de Newton-Einstein pluridimensionnelle décrivant le mouvement d'une particule classique relativiste dans un champ externe électromagnétique
(ou gravitationnel) statique. Le cas d'une particule classique non relativiste est aussi considéré. Nous supposons que le champ externe est suffisamment régulier et suffisamment décroissant à l'infini. Tout d'abord on rappelle (et on développe) des résultats donnant l'existence et des propriétés de l'opérateur de diffusion. Puis on obtient, en particulier, l'asymptotique aux hautes énergies de l'opérateur de diffusion, et on montre que cette asymptotique détermine de manière unique (par des formules explicites) le champ externe. Enfin on obtient un théorème d'unicité à énergie fixée pour le problème inverse de valeurs au bord, et on en déduit, en particulier, qu'à énergie fixée suffisamment grande l'opérateur de diffusion détermine de manière unique le champ externe lorsque celui-ci est aussi supposé à support compact. Les résultats de cette thèse ont été obtenus en développant, en particulier, des méthodes de [Gerver-Nadirashvili, 1983] et [R. Novikov, 1999].
Fichier principal
Vignette du fichier
prth.pdf (1.18 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-00164558 , version 1 (20-07-2007)

Identifiers

  • HAL Id : tel-00164558 , version 1

Cite

Alexandre Jollivet. Problèmes inverses pour l'équation de Newton-Einstein pluridimensionnelle. Mathématiques [math]. Université de Nantes, 2007. Français. ⟨NNT : ⟩. ⟨tel-00164558⟩
253 View
133 Download

Share

Gmail Facebook X LinkedIn More