Contribution à l'étude des opérateurs multilinéaires et des espaces de Hardy - TEL - Thèses en ligne Access content directly
Theses Year : 2007

Contribution à l'étude des opérateurs multilinéaires et des espaces de Hardy

Frederic Bernicot

Abstract

This thesis contains two independent parts. In the first one, we are interested in the study of bilinear operators. We dedicate the two first chapters, to describe "time-frequency" arguments aiming to get local estimates about these operators. Using these "off-diagonal" estimates, we mainly get the continuities of these bilinear operators on Lebesgue spaces and Sobolev spaces. At the end of the second chapter, we study a bilinear pseudo-differential calculus. The third chapter is about a geometrical study of these bilinear operators. To complete this work, in the fourth chapter, we study some various results, for example, we try to generalize our results to multi-dimensional variables. The second part is about the concept of "Hardy spaces". We define an abstract construction of new Hardy spaces. Then, comparing with the already known and studied Hardy spaces, we try to clear up the minimal conditions to keep the main properties of these spaces. So we also get a criterion in order to prove the $H^1-L^1$ continuity of some operators. Then we take an interest in the study of intermediate spaces, got by interpolation between these new $H^1$ spaces and Lebesgue spaces. Finally, we use our abstract theory to solve the problem of maximal $L^p$ regularity on evolution differential equations.
Cette thèse est composée de deux parties indépendantes. La première partie concerne l'étude des opérateurs bilinéaires. On consacre les deux premiers chapitres à détailler les arguments d'une décomposition "temps-fréquence" afin d'obtenir des estimations localisées sur ces opérateurs. En utilisant ces estimations hors-diagonales, nous obtenons principalement les continuités de ces opérateurs bilinéaires sur les espaces de Lebesgue et les espaces de Sobolev. Nous finissons ce deuxième chapitre par l'étude d'un calcul pseudo-différentiel bilinéaire. Le troisième chapitre porte sur une étude géométrique de ces opérateurs bilinéaires. Afin de compléter ce travail, nous étudions dans le quatrième chapitre différents résultats divers tels qu'une généralisation des résultats pour des variables multi-dimensionnelles. La deuxième partie porte sur la notion d'espace de Hardy. On y définit une construction abstraite de nouveaux espaces de Hardy. Puis en comparant avec les espaces de Hardy déjà connus et utilisés, nous essayons de dégager les conditions minimales pour conserver les propriétés essentielles de ces espaces. Nous obtenons donc un critère pour obtenir la continuité $H^1-L^1$ de certains opérateurs. Nous nous intéressons ensuite à l'étude des espaces intermédiaires par interpolation entre ces espaces $H^1$ obtenus et les espaces de Lebesgue. Nous finissons ensuite par appliquer ces résultats abstraits pour répondre au problème de régularité maximale $L^p$ sur les équations d'évolution.

Domains

Fichier principal
Vignette du fichier
thesefinale2.pdf (1.49 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-00199735 , version 1 (19-12-2007)

Identifiers

  • HAL Id : tel-00199735 , version 1

Cite

Frederic Bernicot. Contribution à l'étude des opérateurs multilinéaires et des espaces de Hardy. domain_other. Université Paris Sud - Paris XI, 2007. Français. ⟨NNT : ⟩. ⟨tel-00199735⟩
89 View
182 Download

Share

Gmail Facebook X LinkedIn More