L'entre-deux-guerres mathématique à travers les thèses soutenues en France - TEL - Thèses en ligne Access content directly
Theses Year : 2009

Analyzing French Mathematical Research During the Interwar Period Through Theses

L'entre-deux-guerres mathématique à travers les thèses soutenues en France

Juliette Leloup
  • Function : Author
  • PersonId : 864219

Abstract

To analyze the French mathematical research during the interwar period, I study the 242 theses in the mathematical sciences defended in France and more precisely the 203 ones defended in Paris. My approach operates at three different levels of analysis. The first level consists in a quantitative analysis of the corpus. The second one relies on the referee report and on some aspects of the theses (introduction, etc.). The third level is based on a detailed study of the thesis itself. The quantitative analysis concerns all 242 theses. Then I distinguish the theses defended at provincial universities and at the University of Paris. The analysis of the former sheds light on the mathematical life of four faculties (Strasbourg, Poitiers, Lyon and Montpellier) and their specificities. The second and the third level of my analysis are applied to specific domains and theses defended in Paris. Geometry, arithmetic and algebra, and function theory are analyzed at the second level of analysis, theses in complex function theory and in probability theory and statistics at the third one. These two levels display the central role of some mathematicians, like Élie Cartan, and allow us to rethink some trends in mathematical research in this period.
L'entre-deux-guerres mathématique est étudié à partir des 242 thèses en sciences mathématiques soutenues en France. Ce corpus est analysé à trois niveaux différents. L'analyse de premier niveau consiste en une analyse quantitative de l'ensemble des doctorats. Elle permet de mettre en évidence les équilibres entre les différents domaines des sciences mathématiques et les différentes facultés de France, celle de Paris et celles de province. Les thèses soutenues en province sont alors étudiées séparément et révèlent les vies mathématiques de plusieurs facultés : celles de Strasbourg, Poitiers, Lyon et Montpellier. Le deuxième niveau d'analyse est fondé sur l'étude des introductions et des rapports de thèses, le troisième sur celle des thèses en elles-mêmes et des rapports. Le deuxième niveau est appliqué aux thèses soutenues à Paris et classées dans les domaines de l'arithmétique et de l'algèbre, de la géométrie et de la théorie des fonctions. Un ensemble de doctorats classés en théorie des fonctions de la variable complexe et les thèses de probabilités sont étudiées avec le troisième niveau d'analyse. Ces deux dernière échelles permettent de mettre en lumière le rôle joué par certains mathématiciens, comme Élie Cartan, de montrer les méthodes et les résultats qui sont repris et travaillés dans les thèses, et de saisir quelques dynamiques de recherche.
Fichier principal
Vignette du fichier
These_Leloup_Juliette.pdf (3.82 Mo) Télécharger le fichier
soutenance_these.pdf (2.8 Mo) Télécharger le fichier
Format : Other

Dates and versions

tel-00426604 , version 1 (26-10-2009)

Identifiers

  • HAL Id : tel-00426604 , version 1

Cite

Juliette Leloup. L'entre-deux-guerres mathématique à travers les thèses soutenues en France. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2009. Français. ⟨NNT : ⟩. ⟨tel-00426604⟩
711 View
3426 Download

Share

Gmail Facebook X LinkedIn More